Dayong Wang, S. Hoi, Pengcheng Wu, Jianke Zhu, Ying He, C. Miao
{"title":"Learning to name faces: a multimodal learning scheme for search-based face annotation","authors":"Dayong Wang, S. Hoi, Pengcheng Wu, Jianke Zhu, Ying He, C. Miao","doi":"10.1145/2484028.2484040","DOIUrl":null,"url":null,"abstract":"Automated face annotation aims to automatically detect human faces from a photo and further name the faces with the corresponding human names. In this paper, we tackle this open problem by investigating a search-based face annotation (SBFA) paradigm for mining large amounts of web facial images freely available on the WWW. Given a query facial image for annotation, the idea of SBFA is to first search for top-n similar facial images from a web facial image database and then exploit these top-ranked similar facial images and their weak labels for naming the query facial image. To fully mine those information, this paper proposes a novel framework of Learning to Name Faces (L2NF) -- a unified multimodal learning approach for search-based face annotation, which consists of the following major components: (i) we enhance the weak labels of top-ranked similar images by exploiting the \"label smoothness\" assumption; (ii) we construct the multimodal representations of a facial image by extracting different types of features; (iii) we optimize the distance measure for each type of features using distance metric learning techniques; and finally (iv) we learn the optimal combination of multiple modalities for annotation through a learning to rank scheme. We conduct a set of extensive empirical studies on two real-world facial image databases, in which encouraging results show that the proposed algorithms significantly boost the naming accuracy of search-based face annotation task.","PeriodicalId":178818,"journal":{"name":"Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484028.2484040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Automated face annotation aims to automatically detect human faces from a photo and further name the faces with the corresponding human names. In this paper, we tackle this open problem by investigating a search-based face annotation (SBFA) paradigm for mining large amounts of web facial images freely available on the WWW. Given a query facial image for annotation, the idea of SBFA is to first search for top-n similar facial images from a web facial image database and then exploit these top-ranked similar facial images and their weak labels for naming the query facial image. To fully mine those information, this paper proposes a novel framework of Learning to Name Faces (L2NF) -- a unified multimodal learning approach for search-based face annotation, which consists of the following major components: (i) we enhance the weak labels of top-ranked similar images by exploiting the "label smoothness" assumption; (ii) we construct the multimodal representations of a facial image by extracting different types of features; (iii) we optimize the distance measure for each type of features using distance metric learning techniques; and finally (iv) we learn the optimal combination of multiple modalities for annotation through a learning to rank scheme. We conduct a set of extensive empirical studies on two real-world facial image databases, in which encouraging results show that the proposed algorithms significantly boost the naming accuracy of search-based face annotation task.