Research on raw speech isolated word recognition based on Sincnet-CNN model

Gao Hu, Qingwei Zeng, Chao Long, Dianyou Geng
{"title":"Research on raw speech isolated word recognition based on Sincnet-CNN model","authors":"Gao Hu, Qingwei Zeng, Chao Long, Dianyou Geng","doi":"10.1109/ISPDS56360.2022.9874177","DOIUrl":null,"url":null,"abstract":"In order to effectively speed up the model training time, reduce the model training parameters and improve the accuracy of raw speech isolated word recognition. An interpretable convolutional filter structure (sincnet) combined with convolutional neural network (CNN) is proposed for the task of raw speech isolated word recognition. On the premise of ensuring the speech recognition rate, the model structure becomes lightweight and the computational complexity is reduced. The experimental results show that compared with the traditional neural network model, the proposed model can effectively improve the performance of raw speech isolated word recognition.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to effectively speed up the model training time, reduce the model training parameters and improve the accuracy of raw speech isolated word recognition. An interpretable convolutional filter structure (sincnet) combined with convolutional neural network (CNN) is proposed for the task of raw speech isolated word recognition. On the premise of ensuring the speech recognition rate, the model structure becomes lightweight and the computational complexity is reduced. The experimental results show that compared with the traditional neural network model, the proposed model can effectively improve the performance of raw speech isolated word recognition.
基于Sincnet-CNN模型的原始语音孤立词识别研究
为了有效加快模型训练时间,减少模型训练参数,提高原始语音孤立词识别的准确率。针对原始语音孤立词识别问题,提出了一种结合卷积神经网络的可解释卷积滤波结构(sincnet)。在保证语音识别率的前提下,模型结构轻量化,降低了计算复杂度。实验结果表明,与传统的神经网络模型相比,该模型能有效提高原始语音孤立词识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信