Resource-Efficient Logarithmic Number Scale Arithmetic for SPN Inference on FPGAs

Lukas Weber, Lukas Sommer, J. Oppermann, Alejandro Molina, K. Kersting, A. Koch
{"title":"Resource-Efficient Logarithmic Number Scale Arithmetic for SPN Inference on FPGAs","authors":"Lukas Weber, Lukas Sommer, J. Oppermann, Alejandro Molina, K. Kersting, A. Koch","doi":"10.1109/ICFPT47387.2019.00040","DOIUrl":null,"url":null,"abstract":"FPGAs have been successfully used for the implementation of dedicated accelerators for a wide range of machine learning problems. The inference in so-called Sum-Product Networks can also be accelerated efficiently using a pipelined FPGA architecture. However, as Sum-Product Networks compute exact probability values, the required arithmetic precision poses different challenges than those encountered with Neural Networks. In previous work, this precision was maintained by using double-precision floating-point number formats, which are expensive to implement in FPGAs. In this work, we propose the use of a logarithmic number system format tailored specifically towards the inference in Sum-Product Networks. The evaluation of our optimized arithmetic hardware operators shows that the use of logarithmic number formats allows to save up to 50% hardware resources compared to double-precision floating point, while maintaining sufficient precision for SPN inference at almost identical performance.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

FPGAs have been successfully used for the implementation of dedicated accelerators for a wide range of machine learning problems. The inference in so-called Sum-Product Networks can also be accelerated efficiently using a pipelined FPGA architecture. However, as Sum-Product Networks compute exact probability values, the required arithmetic precision poses different challenges than those encountered with Neural Networks. In previous work, this precision was maintained by using double-precision floating-point number formats, which are expensive to implement in FPGAs. In this work, we propose the use of a logarithmic number system format tailored specifically towards the inference in Sum-Product Networks. The evaluation of our optimized arithmetic hardware operators shows that the use of logarithmic number formats allows to save up to 50% hardware resources compared to double-precision floating point, while maintaining sufficient precision for SPN inference at almost identical performance.
fpga上SPN推理的资源高效对数尺度算法
fpga已经成功地用于实现专用加速器,用于广泛的机器学习问题。在所谓的和积网络推理也可以有效地加速使用流水线FPGA架构。然而,由于和积网络计算精确的概率值,所要求的算术精度与神经网络所遇到的不同。在以前的工作中,这种精度是通过使用双精度浮点数格式来保持的,这在fpga中实现是昂贵的。在这项工作中,我们建议使用专门针对和积网络中的推理定制的对数系统格式。对我们优化的算术硬件运算符的评估表明,与双精度浮点运算相比,使用对数格式可以节省高达50%的硬件资源,同时在几乎相同的性能下为SPN推理保持足够的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信