Aumentando a Interatividade no Ensino a Distância via Geração Automática de Questões: Desafios, Soluções via Aprendizado por Máquina e Um Estudo de Caso no CEDERJ
M. Amorim, J. Simões, F. Assis, J. Pinheiro, Daniel S. Menasch, C. Motta, Ageu Cavalcanti Pacheco
{"title":"Aumentando a Interatividade no Ensino a Distância via Geração Automática de Questões: Desafios, Soluções via Aprendizado por Máquina e Um Estudo de Caso no CEDERJ","authors":"M. Amorim, J. Simões, F. Assis, J. Pinheiro, Daniel S. Menasch, C. Motta, Ageu Cavalcanti Pacheco","doi":"10.5753/wei.2019.6629","DOIUrl":null,"url":null,"abstract":"O aprendizado ativo vem revolucionando a educação. Promovendo a maior interação entre alunos e professores, o aprendizado ativo diminui a taxa de evasão de alunos e aumenta a eficácia do aprendizado. Entretanto, o aprendizado ativo é desafiador num ambiente online, em que os alunos interagem por uma plataforma de ensino semi-presencial no estilo do CEDERJ. Neste artigo, propomos o uso de questionários interativos para aproximar alunos e professores do curso de ensino a distância do CEDERJ. As questões, no entanto, precisam ser apresentadas aos alunos no nı́vel de dificuldade adequado. Um dos desafios consiste, então, em determinar a dificuldade de questões que, em sua maioria, são respondidas apenas uma única vez. Para contornar tal desafio, propomos o uso de aprendizado por máquina, a fim de extrair atributos das questões e classificá-las segundo tais atributos. Usando uma árvore de decisão e um classificar naive Bayes, resultados preliminares indicam a possibilidade de classificar as questões de acordo com seu nı́vel de dificuldade.","PeriodicalId":237172,"journal":{"name":"Anais do Workshop sobre Educação em Computação (WEI)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Workshop sobre Educação em Computação (WEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wei.2019.6629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
O aprendizado ativo vem revolucionando a educação. Promovendo a maior interação entre alunos e professores, o aprendizado ativo diminui a taxa de evasão de alunos e aumenta a eficácia do aprendizado. Entretanto, o aprendizado ativo é desafiador num ambiente online, em que os alunos interagem por uma plataforma de ensino semi-presencial no estilo do CEDERJ. Neste artigo, propomos o uso de questionários interativos para aproximar alunos e professores do curso de ensino a distância do CEDERJ. As questões, no entanto, precisam ser apresentadas aos alunos no nı́vel de dificuldade adequado. Um dos desafios consiste, então, em determinar a dificuldade de questões que, em sua maioria, são respondidas apenas uma única vez. Para contornar tal desafio, propomos o uso de aprendizado por máquina, a fim de extrair atributos das questões e classificá-las segundo tais atributos. Usando uma árvore de decisão e um classificar naive Bayes, resultados preliminares indicam a possibilidade de classificar as questões de acordo com seu nı́vel de dificuldade.