System identification of essential oil extraction system using Non-Linear Autoregressive Model with Exogenous Inputs (NARX)

Farahida Awadz, I. Yassin, M. Rahiman, M. Taib, A. Zabidi, H. Hassan
{"title":"System identification of essential oil extraction system using Non-Linear Autoregressive Model with Exogenous Inputs (NARX)","authors":"Farahida Awadz, I. Yassin, M. Rahiman, M. Taib, A. Zabidi, H. Hassan","doi":"10.1109/ICSGRC.2010.5562527","DOIUrl":null,"url":null,"abstract":"This paper explores the application of Non-Linear Autoregressive Model with Exogeneous Inputs (NARX) system identification of an essential oil extraction system. Model structure selection was performed using the Binary Particle Swarm Optimization (BPSO) algorithm by (J. Kennedy and R. Eberhart, 1997). The application of BPSO for model structure selection represents each particle's position as binary values. Then, the binary values were used to select a set of regressors columns from the regressor matrix. QR factorization was used to estimate the parameters of the reduced regressor matrix. Tests performed on the essential oil extraction system by (Rahiman, 2009), defined the 2nd order model with three terms, while fulfilling all model validation criterions.","PeriodicalId":414677,"journal":{"name":"2010 IEEE Control and System Graduate Research Colloquium (ICSGRC 2010)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Control and System Graduate Research Colloquium (ICSGRC 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGRC.2010.5562527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper explores the application of Non-Linear Autoregressive Model with Exogeneous Inputs (NARX) system identification of an essential oil extraction system. Model structure selection was performed using the Binary Particle Swarm Optimization (BPSO) algorithm by (J. Kennedy and R. Eberhart, 1997). The application of BPSO for model structure selection represents each particle's position as binary values. Then, the binary values were used to select a set of regressors columns from the regressor matrix. QR factorization was used to estimate the parameters of the reduced regressor matrix. Tests performed on the essential oil extraction system by (Rahiman, 2009), defined the 2nd order model with three terms, while fulfilling all model validation criterions.
基于外源输入非线性自回归模型(NARX)的精油提取系统辨识
本文探讨了具有外源性输入的非线性自回归模型(NARX)在精油提取系统辨识中的应用。模型结构选择采用(J. Kennedy和R. Eberhart, 1997)的二元粒子群优化算法(BPSO)进行。BPSO在模型结构选择中的应用将每个粒子的位置表示为二值。然后,使用二值从回归矩阵中选择一组回归列。采用QR分解法估计回归矩阵的参数。(Rahiman, 2009)对精油提取系统进行了测试,定义了具有三个项的二阶模型,同时满足所有模型验证标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信