Fuzzy classification of heart rate trends and artifacts

Dean F. Sittig, K. Cheung, L. Berman
{"title":"Fuzzy classification of heart rate trends and artifacts","authors":"Dean F. Sittig, K. Cheung, L. Berman","doi":"10.1109/CBMS.1992.245009","DOIUrl":null,"url":null,"abstract":"Fuzzy set theory makes it possible to map inexact data, concepts, and events to fuzzy sets via user-defined membership functions. The authors describe a method for (1) robustly estimating the mean and slope of an arbitrary number of data points, (2) developing a set of fuzzy membership functions to classify various properties of heart rate trends, and (3) finding the longest consecutive sequence of heart rate data that fit a particular fuzzy membership function. Preliminary results indicate that fuzzy set theory has significant potential in the development of a clinically robust method for classifying heart rate data, trends, and artifacts.<<ETX>>","PeriodicalId":197891,"journal":{"name":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.1992.245009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fuzzy set theory makes it possible to map inexact data, concepts, and events to fuzzy sets via user-defined membership functions. The authors describe a method for (1) robustly estimating the mean and slope of an arbitrary number of data points, (2) developing a set of fuzzy membership functions to classify various properties of heart rate trends, and (3) finding the longest consecutive sequence of heart rate data that fit a particular fuzzy membership function. Preliminary results indicate that fuzzy set theory has significant potential in the development of a clinically robust method for classifying heart rate data, trends, and artifacts.<>
心率趋势和伪影的模糊分类
模糊集理论使得通过用户定义的隶属函数将不精确的数据、概念和事件映射到模糊集成为可能。作者描述了一种方法:(1)稳健地估计任意数量数据点的平均值和斜率,(2)开发一组模糊隶属函数来分类心率趋势的各种属性,以及(3)找到适合特定模糊隶属函数的最长连续心率数据序列。初步结果表明,模糊集理论在开发一种临床鲁棒方法来分类心率数据、趋势和伪像方面具有重大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信