An incremental framework for classification of EEG signals using quantum particle swarm optimization

Kaveh Hassani, Won-sook Lee
{"title":"An incremental framework for classification of EEG signals using quantum particle swarm optimization","authors":"Kaveh Hassani, Won-sook Lee","doi":"10.1109/CIVEMSA.2014.6841436","DOIUrl":null,"url":null,"abstract":"Classification of electroencephalographic (EEG) signals is a sophisticated task that determines the accuracy of thought pattern recognition performed by computer-brain interface (BCI) which, in turn, determines the degree of naturalness of the interaction provided by that system. However, classifying the EEG signals is not a trivial task due to their non-stationary characteristics. In this paper, we introduce and utilize incremental quantum particle swarm optimization (IQPSO) algorithm for incremental classification of EEG data stream. IQPSO builds the classification model as a set of explicit rules which benefits from semantic symbolic knowledge representation and enhanced comprehensibility. We compared the performance of IQPSO against ten other classifiers on two EEG datasets. The results suggest that IQPSO outperforms other classifiers in terms of classification accuracy, precision and recall.","PeriodicalId":228132,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2014.6841436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Classification of electroencephalographic (EEG) signals is a sophisticated task that determines the accuracy of thought pattern recognition performed by computer-brain interface (BCI) which, in turn, determines the degree of naturalness of the interaction provided by that system. However, classifying the EEG signals is not a trivial task due to their non-stationary characteristics. In this paper, we introduce and utilize incremental quantum particle swarm optimization (IQPSO) algorithm for incremental classification of EEG data stream. IQPSO builds the classification model as a set of explicit rules which benefits from semantic symbolic knowledge representation and enhanced comprehensibility. We compared the performance of IQPSO against ten other classifiers on two EEG datasets. The results suggest that IQPSO outperforms other classifiers in terms of classification accuracy, precision and recall.
基于量子粒子群优化的脑电信号增量分类框架
脑电图(EEG)信号的分类是一项复杂的任务,它决定了由计算机-脑接口(BCI)执行的思维模式识别的准确性,而BCI又决定了该系统提供的交互的自然程度。然而,由于脑电信号的非平稳特性,对其进行分类并不是一项简单的任务。本文介绍并利用增量量子粒子群算法对脑电数据流进行增量分类。IQPSO将分类模型构建为一组明确的规则,这得益于语义符号知识表示和增强的可理解性。我们在两个EEG数据集上比较了IQPSO与其他十个分类器的性能。结果表明,IQPSO在分类准确率、精密度和召回率方面优于其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信