{"title":"K-theory of derivators revisited","authors":"F. Muro, G. Raptis","doi":"10.2140/akt.2017.2.303","DOIUrl":null,"url":null,"abstract":"We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators, but only under a stronger notion of equivalence that is defined by considering a simplicial enrichment of the category of derivators. We show that derivator $K$-theory, as originally defined, is the best approximation to Waldhausen $K$-theory by a functor that is invariant under equivalences of derivators.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2017.2.303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators, but only under a stronger notion of equivalence that is defined by considering a simplicial enrichment of the category of derivators. We show that derivator $K$-theory, as originally defined, is the best approximation to Waldhausen $K$-theory by a functor that is invariant under equivalences of derivators.