{"title":"Wavelet Trees: From Theory to Practice","authors":"R. Grossi, J. Vitter, Bojian Xu","doi":"10.1109/CCP.2011.16","DOIUrl":null,"url":null,"abstract":"The \\emph{wavelet tree} data structure is a space-efficient technique for rank and select queries that generalizes from binary characters to an arbitrary multicharacter alphabet. It has become a key tool in modern full-text indexing and data compression because of its capabilities in compressing, indexing, and searching. We present a comparative study of its practical performance regarding a wide range of options on the dimensions of different coding schemes and tree shapes. Our results are both theoretical and experimental: (1)~We show that the run-length $\\delta$ coding size of wavelet trees achieves the 0-order empirical entropy size of the original string with leading constant 1, when the string's 0-order empirical entropy is asymptotically less than the logarithm of the alphabet size. This result complements the previous works that are dedicated to analyzing run-length $\\gamma$-encoded wavelet trees. It also reveals the scenarios when run-length $\\delta$ encoding becomes practical. (2)~We introduce a full generic package of wavelet trees for a wide range of options on the dimensions of coding schemes and tree shapes. Our experimental study reveals the practical performance of the various modifications.","PeriodicalId":167131,"journal":{"name":"2011 First International Conference on Data Compression, Communications and Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Data Compression, Communications and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCP.2011.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
The \emph{wavelet tree} data structure is a space-efficient technique for rank and select queries that generalizes from binary characters to an arbitrary multicharacter alphabet. It has become a key tool in modern full-text indexing and data compression because of its capabilities in compressing, indexing, and searching. We present a comparative study of its practical performance regarding a wide range of options on the dimensions of different coding schemes and tree shapes. Our results are both theoretical and experimental: (1)~We show that the run-length $\delta$ coding size of wavelet trees achieves the 0-order empirical entropy size of the original string with leading constant 1, when the string's 0-order empirical entropy is asymptotically less than the logarithm of the alphabet size. This result complements the previous works that are dedicated to analyzing run-length $\gamma$-encoded wavelet trees. It also reveals the scenarios when run-length $\delta$ encoding becomes practical. (2)~We introduce a full generic package of wavelet trees for a wide range of options on the dimensions of coding schemes and tree shapes. Our experimental study reveals the practical performance of the various modifications.