Self-selected generation retrieval framework based on topic keyword model

Xinying Lv, Hao Zhang
{"title":"Self-selected generation retrieval framework based on topic keyword model","authors":"Xinying Lv, Hao Zhang","doi":"10.1109/icise-ie58127.2022.00026","DOIUrl":null,"url":null,"abstract":"This paper presents a self-iterating framework implemented in a retrieval dialogue scenario that captures the one-to-many mapping relationships in multiple rounds of dialogue and retrieves multiple conversational contexts from the dialogue corpus that are both semantically diverse and logically coherent. The training model of the framework also allows for the selection and optimisation of individual models in the framework to automatically expand the dialogue corpus to form a one-to-many dialogue dataset.","PeriodicalId":376815,"journal":{"name":"2022 3rd International Conference on Information Science and Education (ICISE-IE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science and Education (ICISE-IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icise-ie58127.2022.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a self-iterating framework implemented in a retrieval dialogue scenario that captures the one-to-many mapping relationships in multiple rounds of dialogue and retrieves multiple conversational contexts from the dialogue corpus that are both semantically diverse and logically coherent. The training model of the framework also allows for the selection and optimisation of individual models in the framework to automatically expand the dialogue corpus to form a one-to-many dialogue dataset.
基于主题关键词模型的自选生成检索框架
本文提出了一个在检索对话场景中实现的自迭代框架,该框架捕获多轮对话中的一对多映射关系,并从对话语料库中检索语义多样且逻辑一致的多个会话上下文。框架的训练模型还允许对框架中的单个模型进行选择和优化,自动扩展对话语料库,形成一对多的对话数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信