A. Tessarolo, F. Luise, M. Bortolozzi, M. Mezzarobba
{"title":"A new magnetic wedge design for enhancing the performance of open-slot electric machines","authors":"A. Tessarolo, F. Luise, M. Bortolozzi, M. Mezzarobba","doi":"10.1109/ESARS.2012.6387432","DOIUrl":null,"url":null,"abstract":"In electric permanent-magnet motors for traction applications, an open slot stator design is to be used when the winding is composed of flat-turn coils. The open slot design, combined with rotor permanent magnets, can produce remarkable cogging torque effects. This paper describes a magnetic wedge design which allows for a significant cogging torque reduction and, at the same time, allows for a fine adjustment of stator phase inductance values. The new wedge concept is applied in the paper to a 12-slot surface permanent-magnet motor. Finite-element analysis is used to study the wedge design effects on motor phase inductance and cogging torque amplitude.","PeriodicalId":243822,"journal":{"name":"2012 Electrical Systems for Aircraft, Railway and Ship Propulsion","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Electrical Systems for Aircraft, Railway and Ship Propulsion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS.2012.6387432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
In electric permanent-magnet motors for traction applications, an open slot stator design is to be used when the winding is composed of flat-turn coils. The open slot design, combined with rotor permanent magnets, can produce remarkable cogging torque effects. This paper describes a magnetic wedge design which allows for a significant cogging torque reduction and, at the same time, allows for a fine adjustment of stator phase inductance values. The new wedge concept is applied in the paper to a 12-slot surface permanent-magnet motor. Finite-element analysis is used to study the wedge design effects on motor phase inductance and cogging torque amplitude.