JSVulExplorer: a JavaScript vulnerability detection model based on transfer learning

S. Chen, Nan Jiang, Zheng Wu, Zichen Wang
{"title":"JSVulExplorer: a JavaScript vulnerability detection model based on transfer learning","authors":"S. Chen, Nan Jiang, Zheng Wu, Zichen Wang","doi":"10.1117/12.2667324","DOIUrl":null,"url":null,"abstract":"Software vulnerabilities will make the system vulnerable to attack, affect the reliability of the software and cause information leakage, which will have a huge impact on enterprises or individuals. Vulnerabilities are inevitable in software development engineering. Therefore, relying on some methods or tools for continuous vulnerability analysis of code is the solution to minimize software vulnerabilities. We propose a neural network model, JSVulExplorer, for static vulnerability analysis of the dynamic programming language JavaScript. The JSVulExplorer focuses on feature enhancement of data. We use pre-training to learn the semantic similarity between code slices, utilize abstract syntax trees to generate path information, and design positional encoding to use the path information. Based on transfer learning, we combine the pre-trained model with path information to improve vulnerability detection performance. Experiments show that JSVulExplorer has significantly improved precision and recall compared to previous models. It is verified that the dynamic event-based programming language can also use the static analysis method for vulnerability detection.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Software vulnerabilities will make the system vulnerable to attack, affect the reliability of the software and cause information leakage, which will have a huge impact on enterprises or individuals. Vulnerabilities are inevitable in software development engineering. Therefore, relying on some methods or tools for continuous vulnerability analysis of code is the solution to minimize software vulnerabilities. We propose a neural network model, JSVulExplorer, for static vulnerability analysis of the dynamic programming language JavaScript. The JSVulExplorer focuses on feature enhancement of data. We use pre-training to learn the semantic similarity between code slices, utilize abstract syntax trees to generate path information, and design positional encoding to use the path information. Based on transfer learning, we combine the pre-trained model with path information to improve vulnerability detection performance. Experiments show that JSVulExplorer has significantly improved precision and recall compared to previous models. It is verified that the dynamic event-based programming language can also use the static analysis method for vulnerability detection.
JSVulExplorer:基于迁移学习的JavaScript漏洞检测模型
软件漏洞会使系统容易受到攻击,影响软件的可靠性,造成信息泄露,对企业或个人都会产生巨大的影响。在软件开发工程中,漏洞是不可避免的。因此,依靠一些方法或工具对代码进行持续的漏洞分析是最小化软件漏洞的解决方案。我们提出了一个神经网络模型,JSVulExplorer,用于动态编程语言JavaScript的静态漏洞分析。JSVulExplorer侧重于数据的特性增强。我们使用预训练来学习代码片之间的语义相似度,利用抽象语法树来生成路径信息,并设计位置编码来使用路径信息。在迁移学习的基础上,将预先训练好的模型与路径信息相结合,提高漏洞检测性能。实验结果表明,jsvullexplorer与之前的模型相比,具有显著的精度和召回率提高。验证了基于事件的动态编程语言也可以使用静态分析方法进行漏洞检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信