Error Analysis of Camera Parameter Estimation based on Collinear Features

Onay Urfahuglo, Thorsten Thormählen, Hellward Broszio, Patrick Mikulastik
{"title":"Error Analysis of Camera Parameter Estimation based on Collinear Features","authors":"Onay Urfahuglo, Thorsten Thormählen, Hellward Broszio, Patrick Mikulastik","doi":"10.1109/CRV.2006.30","DOIUrl":null,"url":null,"abstract":"Feature points for camera parameter estimation are detected in noisy images. Therefore, the feature points and also the camera parameters can only be estimated with limited accuracy. In case of collinear feature points, it is possible to benefit from this geometrical regularity which results in an increased accuracy of the camera parameters. In this paper, a complete theoretical covariance propagation starting from the error of the feature points up to the error of the estimated camera parameters is performed. Additionally, by determining the Fisher information matrix the Cramer-Rao bounds for the covariance of the corrected feature point positions are determined. To demonstrate the impact of collinearity on the accuracy of the camera parameters, a covariance propagation is performed with varying feature point error covariances.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature points for camera parameter estimation are detected in noisy images. Therefore, the feature points and also the camera parameters can only be estimated with limited accuracy. In case of collinear feature points, it is possible to benefit from this geometrical regularity which results in an increased accuracy of the camera parameters. In this paper, a complete theoretical covariance propagation starting from the error of the feature points up to the error of the estimated camera parameters is performed. Additionally, by determining the Fisher information matrix the Cramer-Rao bounds for the covariance of the corrected feature point positions are determined. To demonstrate the impact of collinearity on the accuracy of the camera parameters, a covariance propagation is performed with varying feature point error covariances.
基于共线特征的相机参数估计误差分析
在噪声图像中检测用于相机参数估计的特征点。因此,只能以有限的精度估计特征点和相机参数。在共线特征点的情况下,可以从这种几何规则中受益,从而提高相机参数的精度。本文进行了从特征点误差到相机参数估计误差的完整理论协方差传播。此外,通过确定Fisher信息矩阵,确定校正后特征点位置协方差的Cramer-Rao界。为了证明共线性对相机参数精度的影响,采用不同的特征点误差协方差进行协方差传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信