Graph-Cut Based Iterative Constrained Clustering

Masayuki Okabe, S. Yamada
{"title":"Graph-Cut Based Iterative Constrained Clustering","authors":"Masayuki Okabe, S. Yamada","doi":"10.1109/WI-IAT.2011.42","DOIUrl":null,"url":null,"abstract":"This paper proposes a constrained clustering method that is based on a graph-cut problem formalized by SDP (Semi-Definite Programming). Our SDP approach has the advantage of convenient constraint utilization compared with conventional spectral clustering methods. The algorithm starts from a single cluster of a complete dataset and repeatedly selects the largest cluster, which it then divides into two clusters by swapping rows and columns of a relational label matrix obtained by solving the maximum graph-cut problem. This swapping procedure is effective because we can create clusters without any computationally heavy matrix decomposition process to obtain a cluster label for each data. The results of experiments using a Web document dataset demonstrated that our method outperformed other conventional and the state of the art clustering methods in many cases. Hence we consider our clustering provides a promising basic method to interactive Web clustering.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a constrained clustering method that is based on a graph-cut problem formalized by SDP (Semi-Definite Programming). Our SDP approach has the advantage of convenient constraint utilization compared with conventional spectral clustering methods. The algorithm starts from a single cluster of a complete dataset and repeatedly selects the largest cluster, which it then divides into two clusters by swapping rows and columns of a relational label matrix obtained by solving the maximum graph-cut problem. This swapping procedure is effective because we can create clusters without any computationally heavy matrix decomposition process to obtain a cluster label for each data. The results of experiments using a Web document dataset demonstrated that our method outperformed other conventional and the state of the art clustering methods in many cases. Hence we consider our clustering provides a promising basic method to interactive Web clustering.
基于图割的迭代约束聚类
本文提出了一种基于半确定规划(Semi-Definite Programming, SDP)形式化图割问题的约束聚类方法。与传统的光谱聚类方法相比,我们的SDP方法具有方便约束利用的优点。该算法从完整数据集的单个聚类开始,反复选择最大的聚类,然后通过交换最大图切问题得到的关系标签矩阵的行和列,将其分成两个聚类。这种交换过程是有效的,因为我们可以创建集群,而不需要任何计算繁重的矩阵分解过程来为每个数据获取集群标签。使用Web文档数据集的实验结果表明,在许多情况下,我们的方法优于其他传统的和最先进的聚类方法。因此,我们认为我们的聚类为交互式Web聚类提供了一种很有前途的基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信