Hybrid SVM kernels for protein secondary structure prediction

Gulsah Altun, Hae-Jin Hu, D. Brinza, R. Harrison, A. Zelikovsky, Yi Pan
{"title":"Hybrid SVM kernels for protein secondary structure prediction","authors":"Gulsah Altun, Hae-Jin Hu, D. Brinza, R. Harrison, A. Zelikovsky, Yi Pan","doi":"10.1109/GRC.2006.1635912","DOIUrl":null,"url":null,"abstract":"The Support Vector Machine is a powerful methodology for solving problems in nonlinear classification, function estimation and density estimation. When data are not linearly separable, data are mapped to a high dimensional future space using a nonlinear function which can be computed through a positive definite kernel in the input space. Using a suitable kernel function for a particular problem and input data can change the prediction results remarkably and improve the accuracy. The goal of this work is to find the best kernel functions that can be applied to different types of data and problems. In this paper, we propose two hybrid kernels SVMSM+RBF and SVMEDIT+RBF. SVMSM+RBF is designed by combining the best performed RBF kernel with substitution matrix (SM) based kernel developed by Vanschoenwinkel and Manderick. SVMEDIT+RBF kernel combines the RBF kernel and the edit kernel devised by Li and Jiang. We tested these two hybrid kernels on one of the widely studied problems in bioinformatics which is the protein secondary structure prediction problem. For the protein secondary structure problem, our results were 91% accuracy on H/E binary classifier.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Support Vector Machine is a powerful methodology for solving problems in nonlinear classification, function estimation and density estimation. When data are not linearly separable, data are mapped to a high dimensional future space using a nonlinear function which can be computed through a positive definite kernel in the input space. Using a suitable kernel function for a particular problem and input data can change the prediction results remarkably and improve the accuracy. The goal of this work is to find the best kernel functions that can be applied to different types of data and problems. In this paper, we propose two hybrid kernels SVMSM+RBF and SVMEDIT+RBF. SVMSM+RBF is designed by combining the best performed RBF kernel with substitution matrix (SM) based kernel developed by Vanschoenwinkel and Manderick. SVMEDIT+RBF kernel combines the RBF kernel and the edit kernel devised by Li and Jiang. We tested these two hybrid kernels on one of the widely studied problems in bioinformatics which is the protein secondary structure prediction problem. For the protein secondary structure problem, our results were 91% accuracy on H/E binary classifier.
基于混合支持向量机核的蛋白质二级结构预测
支持向量机是解决非线性分类、函数估计和密度估计等问题的有力方法。当数据不可线性分离时,使用非线性函数将数据映射到高维未来空间,该函数可以通过输入空间中的正定核来计算。针对特定问题和输入数据使用合适的核函数可以显著改变预测结果,提高预测精度。这项工作的目标是找到可以应用于不同类型的数据和问题的最佳核函数。本文提出了SVMSM+RBF和SVMEDIT+RBF两种混合核。SVMSM+RBF是将性能最好的RBF核与Vanschoenwinkel和Manderick开发的基于代换矩阵(SM)的核相结合而设计的。SVMEDIT+RBF内核将RBF内核和李、姜设计的编辑内核结合在一起。我们对这两种杂交核进行了测试,以解决生物信息学中一个广泛研究的问题——蛋白质二级结构预测问题。对于蛋白质二级结构问题,我们的结果在H/E二元分类器上的准确率为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信