{"title":"Parametric Stiffness in Large-Scale Wind-Turbine Blades and the Effects on Resonance and Speed Locking","authors":"Ayse Sapmaz, B. Feeny","doi":"10.1115/detc2020-22717","DOIUrl":null,"url":null,"abstract":"\n This paper is on parametric effect in large scale horizontal-axis wind-turbine blades and speed locking phenomenon for a simplified model of the in-plane blade-hub dynamics. The relative strength of the parametric stiffness is evaluated for actual and scaled-length blades. Fixed-position natural frequencies are found at different rotation angles to show the significance of the gravity’s parametric effect. The ratio of the parametric and elastic modal stiffness is then estimated for the scaled versions of the NREL’s blades for four models to present the relation between the blade size and the parametric effects. The parametric effect on blade tip placements are investigated for superharmonic resonances at orders two and three for blades of various lengths. An analysis of speed-locking is presented, and interpreted for the various blades.","PeriodicalId":398186,"journal":{"name":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is on parametric effect in large scale horizontal-axis wind-turbine blades and speed locking phenomenon for a simplified model of the in-plane blade-hub dynamics. The relative strength of the parametric stiffness is evaluated for actual and scaled-length blades. Fixed-position natural frequencies are found at different rotation angles to show the significance of the gravity’s parametric effect. The ratio of the parametric and elastic modal stiffness is then estimated for the scaled versions of the NREL’s blades for four models to present the relation between the blade size and the parametric effects. The parametric effect on blade tip placements are investigated for superharmonic resonances at orders two and three for blades of various lengths. An analysis of speed-locking is presented, and interpreted for the various blades.