Real-time video stabilization algorithm based on efficient block matching for UAVs

Karina Mayen, C. Espinoza, H. Romero, S. Salazar, Mariano I. Lizárraga, R. Lozano
{"title":"Real-time video stabilization algorithm based on efficient block matching for UAVs","authors":"Karina Mayen, C. Espinoza, H. Romero, S. Salazar, Mariano I. Lizárraga, R. Lozano","doi":"10.1109/RED-UAS.2015.7440993","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a video stabilization algorithm based on an efficient block matching on the airplane using Kalman Filtering. This algorithm uses the bit-planes to estimate and compensate the translational motion; while to compensate the rotation motion vector experienced in the video sequences we use the four local estimation approach to compute the rotational resultant vector. The global motion vectors of image frames are accumulated to obtain global displacement vectors, then they are filtered using the Kalman theory to get a vision stabilized system.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7440993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we proposed a video stabilization algorithm based on an efficient block matching on the airplane using Kalman Filtering. This algorithm uses the bit-planes to estimate and compensate the translational motion; while to compensate the rotation motion vector experienced in the video sequences we use the four local estimation approach to compute the rotational resultant vector. The global motion vectors of image frames are accumulated to obtain global displacement vectors, then they are filtered using the Kalman theory to get a vision stabilized system.
基于高效块匹配的无人机实时稳像算法
本文提出了一种基于卡尔曼滤波在飞机上进行高效块匹配的视频稳像算法。该算法利用位平面来估计和补偿平移运动;而为了补偿视频序列中所经历的旋转运动矢量,我们使用四局部估计方法来计算旋转合成矢量。对图像帧的全局运动矢量进行累积,得到全局位移矢量,然后利用卡尔曼理论对其进行滤波,得到视觉稳定系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信