A New Intelligent MPPT Based on ANN Algorithm for Photovoltaic System

Jawad Chorfi, M. Zazi, M. Mansori
{"title":"A New Intelligent MPPT Based on ANN Algorithm for Photovoltaic System","authors":"Jawad Chorfi, M. Zazi, M. Mansori","doi":"10.1109/IRSEC.2018.8702858","DOIUrl":null,"url":null,"abstract":"This article presents the design of a solar controller used in photovoltaic systems to protect the battery against the phenomenon of overcharging and deep discharge. In addition to the protection function, this controller ensures the tracking of the maximum power point (MPPT) and allows the photovoltaic generator to deliver its maximum power whatever the variation of the climatic conditions (irradiation and temperature), a study and comparison of a classical control (perturb and observe “P&O”) with an intelligent control (artificial neural networks “ANN”) was presented. Simulations performed under MATLAB and SIMULINK allow illustrating the advantages and disadvantages of each technique to be drawn.","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This article presents the design of a solar controller used in photovoltaic systems to protect the battery against the phenomenon of overcharging and deep discharge. In addition to the protection function, this controller ensures the tracking of the maximum power point (MPPT) and allows the photovoltaic generator to deliver its maximum power whatever the variation of the climatic conditions (irradiation and temperature), a study and comparison of a classical control (perturb and observe “P&O”) with an intelligent control (artificial neural networks “ANN”) was presented. Simulations performed under MATLAB and SIMULINK allow illustrating the advantages and disadvantages of each technique to be drawn.
一种基于神经网络算法的光伏系统智能MPPT
本文介绍了一种用于光伏系统的太阳能控制器的设计,以防止电池的过充和深度放电现象。除了保护功能外,该控制器还保证了最大功率点(MPPT)的跟踪,使光伏发电机组无论气候条件(辐照和温度)的变化都能输出最大功率,并对经典控制(摄动和观察“P&O”)与智能控制(人工神经网络“ANN”)进行了研究和比较。在MATLAB和SIMULINK下进行的仿真可以说明每种技术的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信