Model-versioning-in-the-large: Algebraic foundations and the tile notation

Z. Diskin, K. Czarnecki, M. Antkiewicz
{"title":"Model-versioning-in-the-large: Algebraic foundations and the tile notation","authors":"Z. Diskin, K. Czarnecki, M. Antkiewicz","doi":"10.1109/CVSM.2009.5071715","DOIUrl":null,"url":null,"abstract":"Model-versioning-in-the-large is concerned with complex scenarios involving multiple updates and multiple replicas of a model. The paper introduces tile systems as rephrasing of double categories in model versioning terms, and shows that the tile language enables a very general formalization of versioning concepts. The formalization makes the concepts amenable to algebraic analysis and provides a convenient notation for version system designers. It also allows one to formulate algebraic laws that a correct versioning system must or may want to satisfy.","PeriodicalId":413560,"journal":{"name":"2009 ICSE Workshop on Comparison and Versioning of Software Models","volume":"815 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 ICSE Workshop on Comparison and Versioning of Software Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVSM.2009.5071715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Model-versioning-in-the-large is concerned with complex scenarios involving multiple updates and multiple replicas of a model. The paper introduces tile systems as rephrasing of double categories in model versioning terms, and shows that the tile language enables a very general formalization of versioning concepts. The formalization makes the concepts amenable to algebraic analysis and provides a convenient notation for version system designers. It also allows one to formulate algebraic laws that a correct versioning system must or may want to satisfy.
大模型版本控制:代数基础和块符号
大模型版本控制关注的是涉及多个更新和模型的多个副本的复杂场景。本文将瓦片系统作为模型版本控制术语中双类别的重新表述,并表明瓦片语言能够实现版本控制概念的非常通用的形式化。形式化使概念易于代数分析,并为版本系统设计者提供了方便的符号。它还允许制定一个正确的版本控制系统必须或可能想要满足的代数定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信