Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm

M. Zulfiqar, M. B. Rasheed
{"title":"Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm","authors":"M. Zulfiqar, M. B. Rasheed","doi":"10.1109/iSPEC54162.2022.10033074","DOIUrl":null,"url":null,"abstract":"In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters (ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting.","PeriodicalId":129707,"journal":{"name":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC54162.2022.10033074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters (ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting.
基于遗传算法优化长短期记忆的短期负荷预测
在智能电网的日常运行中,准确的短期负荷预测是至关重要的。为了更有效地预测短期负荷,本文提出了一种基于脐特征工程(FE)、长短期记忆(LSTM)网络和遗传算法(GA)的综合进化深度学习策略。首先,有限元法消除了重复和不相关的属性,保证了较高的计算效率。然后使用遗传算法优化LSTM的参数(ReLU, MAPE, RMSprop批大小,神经元数量和Epoch)。使用优化后的LSTM得到实际的STLF结果。此外,大多数文献研究都集中在准确性的提高上。同时,所设计的模型的重要性和生产率同样受到其收敛速度的限制。分析了独立系统运营商(ISO)新英格兰(ISO- ne)能源部门的历史负荷数据,以验证所开发的混合模型。该模型的MAPE误差值较小,为0.6710,处理时间最短,为159秒。所设计的模型在收敛速度和准确率方面均优于LSTM、LSTM- pso、LSTM- nsga - ii和LSTM- ga等基准模型。也就是说,通过遗传算法的超参数优化可以有效地减小LSTM误差。这些结果可能有助于缩短超参数设置的耗时过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信