Design and simulation of nano/micro feature size patterns using four-beam interference lithography technique

A. Mathew, A. Kirubaraj, D. Moni, D. Devaprakasam
{"title":"Design and simulation of nano/micro feature size patterns using four-beam interference lithography technique","authors":"A. Mathew, A. Kirubaraj, D. Moni, D. Devaprakasam","doi":"10.1109/ECS.2015.7124890","DOIUrl":null,"url":null,"abstract":"Interference Lithography is a developing technique for producing micro/nano array pattern structures over large areas. This paper focus on generation of nano/micro feature size patterns using four-beam interference lithography technique. The generated periodic array pattern structures are developed using MATLAB. The interference parameters in FBIL include wavelength (λ), slit separation (d), angle of incidence (Θ), distance between slit and screen (L) and depth of penetration (DOP). We have simulated and modelled the four beam interference lithography technique by varying interference parameters to produce various feature size patterns over the surface of the substrate. The obtained pattern structures have the periodicity of 0.75 μm for 1064 nm, 0.39 μm for 565 nm. Depth of the focus is found to be 0.235 μm for 1064 nm and 0.125μm for 565 nm. Highest value of depth of penetration is observed to be 0.552 mm and 0.586 mm for 1064 nm and 565 nm respectively. The study of FBIL shows depth of penetration increases with decrease in slit separation. More complex patterns can also be produced on varying the position of beams, angle of incidence and number of beams. FBIL can be applied in fabrication of 3D photonic crystals, magnetic storage, solar cells, waveguides, calibration grids, OLEDs and functional surfaces of sensors.","PeriodicalId":202856,"journal":{"name":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Electronics and Communication Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECS.2015.7124890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interference Lithography is a developing technique for producing micro/nano array pattern structures over large areas. This paper focus on generation of nano/micro feature size patterns using four-beam interference lithography technique. The generated periodic array pattern structures are developed using MATLAB. The interference parameters in FBIL include wavelength (λ), slit separation (d), angle of incidence (Θ), distance between slit and screen (L) and depth of penetration (DOP). We have simulated and modelled the four beam interference lithography technique by varying interference parameters to produce various feature size patterns over the surface of the substrate. The obtained pattern structures have the periodicity of 0.75 μm for 1064 nm, 0.39 μm for 565 nm. Depth of the focus is found to be 0.235 μm for 1064 nm and 0.125μm for 565 nm. Highest value of depth of penetration is observed to be 0.552 mm and 0.586 mm for 1064 nm and 565 nm respectively. The study of FBIL shows depth of penetration increases with decrease in slit separation. More complex patterns can also be produced on varying the position of beams, angle of incidence and number of beams. FBIL can be applied in fabrication of 3D photonic crystals, magnetic storage, solar cells, waveguides, calibration grids, OLEDs and functional surfaces of sensors.
利用四光束干涉光刻技术设计和模拟纳米/微特征尺寸图案
干涉光刻技术是一种用于大面积生产微纳阵列图案结构的新兴技术。本文主要研究了利用四光束干涉光刻技术生成纳米/微特征尺寸图案。利用MATLAB对生成的周期阵图结构进行了开发。FBIL中的干涉参数包括波长(λ)、狭缝间距(d)、入射角(Θ)、狭缝距离(L)和穿透深度(DOP)。我们通过改变干涉参数对四光束干涉光刻技术进行了模拟和建模,以在基板表面上产生各种特征尺寸图案。得到的图案结构在1064 nm处具有0.75 μm的周期性,在565 nm处具有0.39 μm的周期性。1064 nm和565 nm的聚焦深度分别为0.235 μm和0.125μm。在1064 nm和565 nm处,穿透深度最大值分别为0.552 mm和0.586 mm。FBIL的研究表明,随着狭缝间距的减小,穿透深度增加。改变光束的位置、入射角和光束数也可以产生更复杂的图案。FBIL可用于制造三维光子晶体、磁存储、太阳能电池、波导、校准网格、oled和传感器的功能表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信