Comparative Performance of Algorithmic Techniques for Optimizing Dual-Band Rectifier

Maria S. Papadopoulou, A. Boursianis, Argyrios Chatzopoulos, P. Sarigiannidis, S. Nikolaidis, S. Goudos
{"title":"Comparative Performance of Algorithmic Techniques for Optimizing Dual-Band Rectifier","authors":"Maria S. Papadopoulou, A. Boursianis, Argyrios Chatzopoulos, P. Sarigiannidis, S. Nikolaidis, S. Goudos","doi":"10.1109/mocast54814.2022.9837645","DOIUrl":null,"url":null,"abstract":"Radio Frequency (RF) energy harvesting (EH) is a technique to replenish the source of wireless sensor networks (WSNs). Also, many interdisciplinary fields in the Internet-of-Things (IoT) era use RF-EH, like precision agriculture, biomedical, and robotics. Over the years, various designs have been presented in the literature operating in multi- or wide-band frequencies. Usually, a designed system is optimized using specific goals and optimization parameters to obtain maximization in power conversion efficiency (PCE). In this work, a dual-band RF rectifier system that resonates in the Wi-Fi frequency bands of 2.45 GHz and 5.8 GHz is presented. The proposed system is optimized using four optimization techniques, namely the Gradient algorithm, the Minimax algorithm, the Simulated Annealing, and the Genetic algorithm. A set of comparative results is presented to assess the performance of each technique and to obtain the feasible solution of the proposed design. Numerical results demonstrate that a 42.8% efficiency is achieved, having a 16 dBm input power and a 1.7 kΩ output resistance load.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Radio Frequency (RF) energy harvesting (EH) is a technique to replenish the source of wireless sensor networks (WSNs). Also, many interdisciplinary fields in the Internet-of-Things (IoT) era use RF-EH, like precision agriculture, biomedical, and robotics. Over the years, various designs have been presented in the literature operating in multi- or wide-band frequencies. Usually, a designed system is optimized using specific goals and optimization parameters to obtain maximization in power conversion efficiency (PCE). In this work, a dual-band RF rectifier system that resonates in the Wi-Fi frequency bands of 2.45 GHz and 5.8 GHz is presented. The proposed system is optimized using four optimization techniques, namely the Gradient algorithm, the Minimax algorithm, the Simulated Annealing, and the Genetic algorithm. A set of comparative results is presented to assess the performance of each technique and to obtain the feasible solution of the proposed design. Numerical results demonstrate that a 42.8% efficiency is achieved, having a 16 dBm input power and a 1.7 kΩ output resistance load.
双波段整流器优化算法技术的性能比较
射频(RF)能量收集(EH)是一种补充无线传感器网络(WSNs)源的技术。此外,物联网(IoT)时代的许多跨学科领域都使用RF-EH,如精准农业、生物医学和机器人技术。多年来,文献中提出了在多频带或宽带频率下工作的各种设计。通常,对设计好的系统采用特定的目标和优化参数进行优化,以获得最大的功率转换效率(PCE)。本文提出了一种在Wi-Fi 2.45 GHz和5.8 GHz频段谐振的双频射频整流器系统。采用梯度算法、极大极小算法、模拟退火算法和遗传算法四种优化技术对系统进行了优化。给出了一组比较结果,以评估每种技术的性能,并得出所提出设计的可行解。数值结果表明,当输入功率为16 dBm,输出电阻负载为1.7 kΩ时,效率可达42.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信