Exploring the Power – Prediction Accuracy Trade-Off in a Deep Learning Neural Network using Wide Compliance RRAM Device

N. Prabhu, Desmond Loy Jia Jun, P. Dananjaya, E. Toh, W. Lew, N. Raghavan
{"title":"Exploring the Power – Prediction Accuracy Trade-Off in a Deep Learning Neural Network using Wide Compliance RRAM Device","authors":"N. Prabhu, Desmond Loy Jia Jun, P. Dananjaya, E. Toh, W. Lew, N. Raghavan","doi":"10.1109/ISNE.2019.8896449","DOIUrl":null,"url":null,"abstract":"In this work, the quantitative impact of variability in the low and high resistance state distributions of Hafnium oxide based RRAM on the prediction accuracy of deep learning neural networks is explored over a wide range of current compliance ranging from 2 to 500micro Ampere. The device power versus prediction accuracy trade-off trend is examined for such a wide range of compliance for the first time. The weights of one of the layers of the convolutional neural network (CNN) are represented by the floating point binary representation where the binary bits are configured using the RRAM resistance distribution data on an AlexNet platform.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the quantitative impact of variability in the low and high resistance state distributions of Hafnium oxide based RRAM on the prediction accuracy of deep learning neural networks is explored over a wide range of current compliance ranging from 2 to 500micro Ampere. The device power versus prediction accuracy trade-off trend is examined for such a wide range of compliance for the first time. The weights of one of the layers of the convolutional neural network (CNN) are represented by the floating point binary representation where the binary bits are configured using the RRAM resistance distribution data on an AlexNet platform.
基于宽遵从性RRAM器件的深度学习神经网络功率与预测精度权衡研究
在这项工作中,研究了基于氧化铪的RRAM的低电阻和高电阻状态分布的可变性对深度学习神经网络预测精度的定量影响,范围从2到500微安培。器件功率与预测精度的权衡趋势是第一次检查如此广泛的依从性。卷积神经网络(CNN)某一层的权重由浮点二进制表示表示,其中二进制位使用AlexNet平台上的RRAM电阻分布数据进行配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信