Temporal fusion in multi-sensor target tracking systems

R. Niu, P. Varshney, K. Mehrotra, C. Mohan
{"title":"Temporal fusion in multi-sensor target tracking systems","authors":"R. Niu, P. Varshney, K. Mehrotra, C. Mohan","doi":"10.1109/ICIF.2002.1020925","DOIUrl":null,"url":null,"abstract":"For a multi-sensor tracking system, the effects of temporally staggered sensors are investigated and compared with synchronous sensors. To make fair comparisons, a new metric, the average estimation error variance, is defined. Many analytical results are derived for sensors with equal measurement noise variance. Temporally staggered sensors always result in a smaller average error variance than synchronous sensors. The corresponding optimal staggering pattern is such that the sensors are uniformly distributed over time. For sensors with different measurement noise variances, the optimal staggering pattern can be found numerically. Intuitive guidelines on selecting optimal staggering pattern have been presented for different target tracking scenarios.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

For a multi-sensor tracking system, the effects of temporally staggered sensors are investigated and compared with synchronous sensors. To make fair comparisons, a new metric, the average estimation error variance, is defined. Many analytical results are derived for sensors with equal measurement noise variance. Temporally staggered sensors always result in a smaller average error variance than synchronous sensors. The corresponding optimal staggering pattern is such that the sensors are uniformly distributed over time. For sensors with different measurement noise variances, the optimal staggering pattern can be found numerically. Intuitive guidelines on selecting optimal staggering pattern have been presented for different target tracking scenarios.
多传感器目标跟踪系统中的时间融合
对于一个多传感器跟踪系统,研究了时间交错传感器的影响,并与同步传感器进行了比较。为了进行公平的比较,定义了一个新的度量,即平均估计误差方差。对于具有相等测量噪声方差的传感器,导出了许多分析结果。时间交错传感器的平均误差方差总是小于同步传感器。相应的最优交错模式是使传感器随时间均匀分布。对于具有不同测量噪声方差的传感器,可以通过数值计算找到最优的交错模式。针对不同的目标跟踪情况,给出了选择最优交错模式的直观准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信