Classifying for a mixture of object images and character patterns by using CNN pre-trained for large-scale object image dataset

Y. Shima, Yumi Nakashima, M. Yasuda
{"title":"Classifying for a mixture of object images and character patterns by using CNN pre-trained for large-scale object image dataset","authors":"Y. Shima, Yumi Nakashima, M. Yasuda","doi":"10.1109/ICIEA.2018.8398104","DOIUrl":null,"url":null,"abstract":"Neural networks are a powerful means of classifying object images and character patterns. The proposed common classification method for object images and handwritten digits combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. A mixture of STL-10 object images and MNIST handwritten digit patterns is trained by the SVM. Experimental test error rate for the mixture of test 8k STL-10 object images and 10k MNIST digit patterns was 7.734%, which shows that the proposed method is effective for common-category classification.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8398104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neural networks are a powerful means of classifying object images and character patterns. The proposed common classification method for object images and handwritten digits combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. A mixture of STL-10 object images and MNIST handwritten digit patterns is trained by the SVM. Experimental test error rate for the mixture of test 8k STL-10 object images and 10k MNIST digit patterns was 7.734%, which shows that the proposed method is effective for common-category classification.
利用CNN预训练的大规模目标图像数据集对混合目标图像和特征模式进行分类
神经网络是一种对物体图像和特征模式进行分类的强大手段。提出了一种结合卷积神经网络(cnn)和支持向量机(svm)的目标图像和手写体数字通用分类方法。一个被称为Alex-Net的预训练CNN被用作模式特征提取器。Alex-Net是针对大规模对象图像数据集ImageNet进行预训练的。使用支持向量机作为可训练分类器。特征向量从Alex-Net传递给支持向量机。采用支持向量机对STL-10目标图像和MNIST手写数字模式进行混合训练。测试8k STL-10目标图像与10k MNIST数字模式混合的实验测试错误率为7.734%,表明该方法对共类分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信