SAM: Pushing the Limits of Saliency Prediction Models

M. Cornia, L. Baraldi, G. Serra, R. Cucchiara
{"title":"SAM: Pushing the Limits of Saliency Prediction Models","authors":"M. Cornia, L. Baraldi, G. Serra, R. Cucchiara","doi":"10.1109/CVPRW.2018.00250","DOIUrl":null,"url":null,"abstract":"The prediction of human eye fixations has been recently gaining a lot of attention thanks to the improvements shown by deep architectures. In our work, we go beyond classical feed-forward networks to predict saliency maps and propose a Saliency Attentive Model which incorporates neural attention mechanisms to iteratively refine predictions. Experiments demonstrate that the proposed strategy overcomes by a considerable margin the state of the art on the largest dataset available for saliency prediction. Here, we provide experimental results on other popular saliency datasets to confirm the effectiveness and the generalization capabilities of our model, which enable us to reach the state of the art on all considered datasets.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The prediction of human eye fixations has been recently gaining a lot of attention thanks to the improvements shown by deep architectures. In our work, we go beyond classical feed-forward networks to predict saliency maps and propose a Saliency Attentive Model which incorporates neural attention mechanisms to iteratively refine predictions. Experiments demonstrate that the proposed strategy overcomes by a considerable margin the state of the art on the largest dataset available for saliency prediction. Here, we provide experimental results on other popular saliency datasets to confirm the effectiveness and the generalization capabilities of our model, which enable us to reach the state of the art on all considered datasets.
SAM:推动显著性预测模型的极限
由于深度架构的改进,人类眼睛注视的预测最近得到了很多关注。在我们的工作中,我们超越了经典的前馈网络来预测显著性图,并提出了一个包含神经注意机制的显著性注意模型来迭代地改进预测。实验表明,所提出的策略在显著性预测可用的最大数据集上以相当大的优势克服了目前的现状。在这里,我们提供了其他流行的显著性数据集的实验结果,以确认我们模型的有效性和泛化能力,这使我们能够在所有考虑的数据集上达到最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信