Detection Model in Collaborative Multi-Robot Monte Carlo Localization.

R. Barea, E. López, L. Bergasa, S. Alvarez, M. Ocaña
{"title":"Detection Model in Collaborative Multi-Robot Monte Carlo Localization.","authors":"R. Barea, E. López, L. Bergasa, S. Alvarez, M. Ocaña","doi":"10.1109/DIS.2006.24","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for collaborative mobile robot localization based on probabilistic methods (Monte Carlo localization) used in assistant robots. When a root detects another in the same environment, a probabilistic method is used to synchronize each robot's belief. As a result, the robots localize themselves faster and maintain higher accuracy. The technique has been implemented and tested using a virtual environment capable to simulate several robots and using two real mobile robots equipped with cameras and laser range-finders for detecting other robots. The result obtained in simulation and with real robots show improvements in localization speed and accuracy when compared to conventional single-robot localization","PeriodicalId":318812,"journal":{"name":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIS.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an algorithm for collaborative mobile robot localization based on probabilistic methods (Monte Carlo localization) used in assistant robots. When a root detects another in the same environment, a probabilistic method is used to synchronize each robot's belief. As a result, the robots localize themselves faster and maintain higher accuracy. The technique has been implemented and tested using a virtual environment capable to simulate several robots and using two real mobile robots equipped with cameras and laser range-finders for detecting other robots. The result obtained in simulation and with real robots show improvements in localization speed and accuracy when compared to conventional single-robot localization
协同多机器人蒙特卡罗定位中的检测模型。
本文提出了一种基于概率方法(蒙特卡罗定位)的协同移动机器人定位算法。当一个根在同一环境中检测到另一个根时,使用概率方法来同步每个机器人的信念。因此,机器人可以更快地定位自己并保持更高的精度。该技术已经在一个能够模拟多个机器人的虚拟环境中实施和测试,并使用两个配备摄像头和激光测距仪的真实移动机器人来检测其他机器人。仿真结果表明,与传统的单机器人定位相比,该方法在定位速度和精度上都有很大提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信