Improved decoding of Reed-Solomon and algebraic-geometric codes

V. Guruswami, M. Sudan
{"title":"Improved decoding of Reed-Solomon and algebraic-geometric codes","authors":"V. Guruswami, M. Sudan","doi":"10.1109/SFCS.1998.743426","DOIUrl":null,"url":null,"abstract":"Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following \"curve-fitting\" problem over a field F: Given n points {(x/sub i/.y/sub i/)}/sub i=1//sup n/, x/sub i/,y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/{1....,n}. We give an algorithm that solves this problem for e1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n-d-) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of Shokrollahi and Wasserman (1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"157 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1226","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1226

Abstract

Given an error-correcting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed-Solomon codes. The list decoding problem for Reed-Solomon codes reduces to the following "curve-fitting" problem over a field F: Given n points {(x/sub i/.y/sub i/)}/sub i=1//sup n/, x/sub i/,y/sub i//spl isin/F, and a degree parameter k and error parameter e, find all univariate polynomials p of degree at most k such that y/sub i/=p(x/sub i/) for all but at most e values of i/spl isin/{1....,n}. We give an algorithm that solves this problem for e1/3, where the result yields the first asymptotic improvement in four decades. The algorithm generalizes to solve the list decoding problem for other algebraic codes, specifically alternant codes (a class of codes including BCH codes) and algebraic-geometric codes. In both cases, we obtain a list decoding algorithm that corrects up to n-/spl radic/(n-d-) errors, where n is the block length and d' is the designed distance of the code. The improvement for the case of algebraic-geometric codes extends the methods of Shokrollahi and Wasserman (1998) and improves upon their bound for every choice of n and d'. We also present some other consequences of our algorithm including a solution to a weighted curve fitting problem, which is of use in soft-decision decoding algorithms for Reed-Solomon codes.
里德-所罗门码和代数-几何码的改进解码
给定长度为n的字符串和长度为n的任意输入字符串上的纠错码,列表解码问题是找到距离输入字符串指定的汉明距离内的所有码字。提出了一种改进的Reed-Solomon码译码算法。Reed-Solomon码的列表解码问题可以简化为域F上的“曲线拟合”问题:给定n个点{(x/下标i/)。y/下标i/)}/下标i=1//sup n/, x/下标i/,y/下标i//spl isin/F,以及一个度参数k和误差参数e,对于i/spl isin/{1....,n}的所有值(除了最多e个值外),找到所有次为至多k的单变量多项式p,使得y/下标i/=p(x/下标i/)。我们给出了一个解决e1/3问题的算法,其结果产生了四十年来的第一个渐近改进。该算法推广到解决其他代数码的列表译码问题,特别是替代码(包括BCH码在内的一类码)和代数-几何码。在这两种情况下,我们都得到了一种列表解码算法,该算法最多纠正n-/spl径向/(n-d-)错误,其中n是块长度,d'是代码的设计距离。对于代数-几何码的改进扩展了Shokrollahi和Wasserman(1998)的方法,并改进了它们对于n和d'的每个选择的界。我们还介绍了该算法的一些其他结果,包括对加权曲线拟合问题的解决方案,该问题用于Reed-Solomon码的软判决解码算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信