Two Stream Deep Network for Document Image Classification

M. Asim, Muhammad Usman Ghani Khan, M. I. Malik, K. Razzaque, A. Dengel, Sheraz Ahmed
{"title":"Two Stream Deep Network for Document Image Classification","authors":"M. Asim, Muhammad Usman Ghani Khan, M. I. Malik, K. Razzaque, A. Dengel, Sheraz Ahmed","doi":"10.1109/ICDAR.2019.00227","DOIUrl":null,"url":null,"abstract":"This paper presents a novel two-stream approach for document image classification. The proposed approach leverages textual and visual modalities to classify document images into ten categories, including letter, memo, news article, etc. In order to alleviate dependency of textual stream on performance of underlying OCR (which is the case with general content based document image classifiers), we utilize a filter based feature-ranking algorithm. This algorithm ranks the features of each class based on their ability to discriminate document images and selects a set of top 'K' features that are retained for further processing. In parallel, the visual stream uses deep CNN models to extract structural features of document images.Finally, textual and visual streams are concatenated together using an average ensembling method. Experimental results reveal that the proposed approach outperforms the state-of-the-art system with a significant margin of 4.5% on publicly available Tobacco-3482 dataset.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a novel two-stream approach for document image classification. The proposed approach leverages textual and visual modalities to classify document images into ten categories, including letter, memo, news article, etc. In order to alleviate dependency of textual stream on performance of underlying OCR (which is the case with general content based document image classifiers), we utilize a filter based feature-ranking algorithm. This algorithm ranks the features of each class based on their ability to discriminate document images and selects a set of top 'K' features that are retained for further processing. In parallel, the visual stream uses deep CNN models to extract structural features of document images.Finally, textual and visual streams are concatenated together using an average ensembling method. Experimental results reveal that the proposed approach outperforms the state-of-the-art system with a significant margin of 4.5% on publicly available Tobacco-3482 dataset.
文档图像分类的二流深度网络
提出了一种新的双流文档图像分类方法。该方法利用文本和视觉模式将文档图像分为十类,包括信件、备忘录、新闻文章等。为了减轻文本流对底层OCR性能的依赖(这是一般基于内容的文档图像分类器的情况),我们使用了基于过滤器的特征排序算法。该算法根据每个类别区分文档图像的能力对其特征进行排名,并选择一组最重要的“K”特征,这些特征将被保留以供进一步处理。同时,视觉流使用深度CNN模型提取文档图像的结构特征。最后,使用平均集成方法将文本流和视觉流连接在一起。实验结果表明,在公开可获得的Tobacco-3482数据集上,所提出的方法优于最先进的系统,其显著幅度为4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信