A Malware Detection Approach Using Malware Images and Autoencoders

Xiang Jin, X. Xing, Haroon Elahi, Guojun Wang, Hai Jiang
{"title":"A Malware Detection Approach Using Malware Images and Autoencoders","authors":"Xiang Jin, X. Xing, Haroon Elahi, Guojun Wang, Hai Jiang","doi":"10.1109/MASS50613.2020.00009","DOIUrl":null,"url":null,"abstract":"Most machine learning-based malware detection systems use various supervised learning methods to classify different instances of software as benign or malicious. This approach provides no information regarding the behavioral characteristics of malware. It also requires a large amount of training data and is prone to labeling difficulties and can reduce accuracy due to redundant training data. Therefore, we propose a malware detection method based on deep learning, which uses malware images and a set of autoencoders to detect malware. The method is to design an autoencoder to learn the functional characteristics of malware, and then to observe the reconstruction error of autoencoder to realize the classification and detection of malware and benign software. The proposed approach achieves 93% accuracy and comparatively better F1-score values while detecting malware and needs little training data when compared with traditional malware detection systems.","PeriodicalId":105795,"journal":{"name":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"821 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS50613.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Most machine learning-based malware detection systems use various supervised learning methods to classify different instances of software as benign or malicious. This approach provides no information regarding the behavioral characteristics of malware. It also requires a large amount of training data and is prone to labeling difficulties and can reduce accuracy due to redundant training data. Therefore, we propose a malware detection method based on deep learning, which uses malware images and a set of autoencoders to detect malware. The method is to design an autoencoder to learn the functional characteristics of malware, and then to observe the reconstruction error of autoencoder to realize the classification and detection of malware and benign software. The proposed approach achieves 93% accuracy and comparatively better F1-score values while detecting malware and needs little training data when compared with traditional malware detection systems.
一种使用恶意软件图像和自动编码器的恶意软件检测方法
大多数基于机器学习的恶意软件检测系统使用各种监督学习方法来将不同的软件实例分类为良性或恶意。这种方法不提供有关恶意软件行为特征的信息。它还需要大量的训练数据,容易出现标注困难,并且由于训练数据冗余会降低准确性。因此,我们提出了一种基于深度学习的恶意软件检测方法,该方法使用恶意软件图像和一组自编码器来检测恶意软件。该方法是通过设计自编码器来了解恶意软件的功能特征,然后观察自编码器的重构误差,从而实现恶意软件和良性软件的分类和检测。与传统的恶意软件检测系统相比,该方法在检测恶意软件时准确率达到93%,具有较好的f1得分值,并且所需的训练数据较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信