Scale-Model Architectural Simulation

Wenjie Liu, W. Heirman, Stijn Eyerman, Shoaib Akram, L. Eeckhout
{"title":"Scale-Model Architectural Simulation","authors":"Wenjie Liu, W. Heirman, Stijn Eyerman, Shoaib Akram, L. Eeckhout","doi":"10.1109/ISPASS55109.2022.00006","DOIUrl":null,"url":null,"abstract":"Computer architects extensively use simulation to steer future processor research and development. Simulating large-scale multicore processors is extremely time-consuming and is sometimes impossible because of simulation infrastructure constraints and/or simulation host compute and memory limitations. This paper proposes scale-model simulation, a novel methodology to predict large-scale multicore system performance. Scale-model simulation first constructs and simulates a scale model of the target system with reduced core count and shared resources. Target system performance is then predicted through machine-learning (ML) based extrapolation. Scale-model simulation predicts 32-core target system performance based on a single-core scale model with an average error of 8.0% and 15.8% for homogeneous and heterogeneous multiprogram workloads, respectively, while yielding a $28\\times$ simulation speedup.","PeriodicalId":115391,"journal":{"name":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS55109.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computer architects extensively use simulation to steer future processor research and development. Simulating large-scale multicore processors is extremely time-consuming and is sometimes impossible because of simulation infrastructure constraints and/or simulation host compute and memory limitations. This paper proposes scale-model simulation, a novel methodology to predict large-scale multicore system performance. Scale-model simulation first constructs and simulates a scale model of the target system with reduced core count and shared resources. Target system performance is then predicted through machine-learning (ML) based extrapolation. Scale-model simulation predicts 32-core target system performance based on a single-core scale model with an average error of 8.0% and 15.8% for homogeneous and heterogeneous multiprogram workloads, respectively, while yielding a $28\times$ simulation speedup.
比例模型建筑模拟
计算机架构师广泛使用仿真来指导未来的处理器研究和开发。模拟大型多核处理器非常耗时,而且由于模拟基础设施的限制和/或模拟主机的计算和内存限制,有时是不可能的。本文提出了一种预测大规模多核系统性能的新方法——比例模型仿真。比例模型仿真首先构建和仿真一个核心数减少、资源共享的目标系统的比例模型。然后通过基于机器学习(ML)的外推预测目标系统的性能。规模模型仿真基于单核规模模型预测32核目标系统性能,在同质和异构多程序工作负载下,平均误差分别为8.0%和15.8%,同时产生28倍的模拟加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信