Extractors for Low-Weight Affine Sources

Anup Rao
{"title":"Extractors for Low-Weight Affine Sources","authors":"Anup Rao","doi":"10.1109/CCC.2009.36","DOIUrl":null,"url":null,"abstract":"We give polynomial time computable extractors for \\emph{low-weight affince sources}. A distribution is affine if it samples a random points from some unknown low dimensional subspace of $\\mathbb{F}_2^n$. A distribution is low weight affine if the corresponding linear space has a basis of low-weight vectors. Low-weight affine sources are thus a generalization of the well studied models of bit-fixing sources (which are just weight $1$ affine sources). For universal constants $c,\\epsilon$, our extractors can extract almost all the entropy from weight $k^{\\epsilon}$ affine sources of dimension $k$, as long as $k ≫ \\log ^c n$, with error $2^{-k^{\\Omega(1)}}$. In particular, our results give new extractors for low entropy bit-fixing sources, with exponentially small error, a parameter that is important for the application of these extractors to cryptography. Our techniques involve constructing new \\emph{condensers} for \\emph{affine somewhere random sources}.","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

We give polynomial time computable extractors for \emph{low-weight affince sources}. A distribution is affine if it samples a random points from some unknown low dimensional subspace of $\mathbb{F}_2^n$. A distribution is low weight affine if the corresponding linear space has a basis of low-weight vectors. Low-weight affine sources are thus a generalization of the well studied models of bit-fixing sources (which are just weight $1$ affine sources). For universal constants $c,\epsilon$, our extractors can extract almost all the entropy from weight $k^{\epsilon}$ affine sources of dimension $k$, as long as $k ≫ \log ^c n$, with error $2^{-k^{\Omega(1)}}$. In particular, our results give new extractors for low entropy bit-fixing sources, with exponentially small error, a parameter that is important for the application of these extractors to cryptography. Our techniques involve constructing new \emph{condensers} for \emph{affine somewhere random sources}.
低权重仿射源的提取器
我们给出了\emph{低权重的影响源}的多项式时间可计算提取器。一个分布是仿射的,如果它从$\mathbb{F}_2^n$的某个未知的低维子空间中随机采样一个点。如果相应的线性空间有一组低权向量的基,那么这个分布就是低权仿射的。因此,低权重的仿射源是对比特固定源(即权重$1$仿射源)的良好研究模型的推广。对于通用常数$c,\epsilon$,我们的提取器可以从维度$k$的权值$k^{\epsilon}$仿射源中提取几乎所有的熵,只要$k ≫ \log ^c n$,误差$2^{-k^{\Omega(1)}}$。特别是,我们的结果为低熵固定位源提供了新的提取器,其误差呈指数级小,这是这些提取器应用于密码学的重要参数。我们的技术包括为\emph{仿射某处随机源}构建新的\emph{冷凝器}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信