Using Temporal Discovery and Data-Driven Journey-Maps to Predict Customer Satisfaction

Joseph Bockhorst, Yingjian Wang, Sukrat Gupta, M. Qazi, Mingju Sun, G. Fung
{"title":"Using Temporal Discovery and Data-Driven Journey-Maps to Predict Customer Satisfaction","authors":"Joseph Bockhorst, Yingjian Wang, Sukrat Gupta, M. Qazi, Mingju Sun, G. Fung","doi":"10.1109/ICMLA.2016.0152","DOIUrl":null,"url":null,"abstract":"Timely identification of potentially dissatisfied customers enables us to take meaningful interventions to improve customer experience. The goal of this work is to create models that can predict customer satisfaction for active insurance claims at any point in time during the claim process. In order to capture relevant temporal information, we introduce the concept of a \"journey-map\": a data-driven structured timeline where all the relevant events pertinent to the claim process are registered and positioned temporally with respect to each other. We also describe a machine-learning-based framework to extract and discover meaningful information relevant for the task at hand. The result of this work is a deployed system currently used during the claims process.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Timely identification of potentially dissatisfied customers enables us to take meaningful interventions to improve customer experience. The goal of this work is to create models that can predict customer satisfaction for active insurance claims at any point in time during the claim process. In order to capture relevant temporal information, we introduce the concept of a "journey-map": a data-driven structured timeline where all the relevant events pertinent to the claim process are registered and positioned temporally with respect to each other. We also describe a machine-learning-based framework to extract and discover meaningful information relevant for the task at hand. The result of this work is a deployed system currently used during the claims process.
使用时间发现和数据驱动的旅程图来预测客户满意度
及时识别潜在的不满意客户使我们能够采取有意义的干预措施来改善客户体验。这项工作的目标是创建能够在索赔过程中的任何时间点预测客户对主动保险索赔满意度的模型。为了获取相关的时间信息,我们引入了“旅程图”的概念:一个数据驱动的结构化时间轴,其中与索赔过程相关的所有相关事件都被注册并相对于彼此进行时间定位。我们还描述了一个基于机器学习的框架,用于提取和发现与手头任务相关的有意义的信息。这项工作的结果是在索赔过程中当前使用的已部署系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信