An image analysis example using learning agents

G. Donohoe, C. Wofsy, J. Oliver
{"title":"An image analysis example using learning agents","authors":"G. Donohoe, C. Wofsy, J. Oliver","doi":"10.1109/ACSSC.1996.599120","DOIUrl":null,"url":null,"abstract":"When fully automatic image analysis is not feasible, an interactive, semiautonomous system may suffice. We present an application in electron microscopy in which the user gives the computer varying degrees of autonomy to detect gold-stained proteins in images of the surface of a cell. Initially, the system operates in a manual mode: the user clicks the mouse on the image to designate the coordinates of a protein molecule. In the most autonomous mode, a single mouse click inside a cluster of particles spawns an agent which \"nests\" in a molecule and \"breeds\": producing copies of itself each of which searches for a molecule. The user always has the option to override the autonomous labeling, so classification accuracy is assured.","PeriodicalId":270729,"journal":{"name":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1996.599120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When fully automatic image analysis is not feasible, an interactive, semiautonomous system may suffice. We present an application in electron microscopy in which the user gives the computer varying degrees of autonomy to detect gold-stained proteins in images of the surface of a cell. Initially, the system operates in a manual mode: the user clicks the mouse on the image to designate the coordinates of a protein molecule. In the most autonomous mode, a single mouse click inside a cluster of particles spawns an agent which "nests" in a molecule and "breeds": producing copies of itself each of which searches for a molecule. The user always has the option to override the autonomous labeling, so classification accuracy is assured.
使用学习代理的图像分析示例
当全自动图像分析不可行时,一个交互式的半自主系统可能就足够了。我们提出了一种在电子显微镜中的应用,其中用户赋予计算机不同程度的自主权,以检测细胞表面图像中的金染色蛋白质。最初,该系统以手动模式运行:用户在图像上点击鼠标来指定蛋白质分子的坐标。在最自主的模式下,鼠标在一簇粒子中点击一下,就会产生一个代理人,它在一个分子中“筑巢”并“繁殖”:产生自己的副本,每个副本都在寻找一个分子。用户始终可以选择覆盖自动标记,因此分类准确性得到了保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信