Intelligent Prediction of Vulnerability Severity Level Based on Text Mining and XGBboost

Peichao Wang, Yun Zhou, Baodan Sun, Weiming Zhang
{"title":"Intelligent Prediction of Vulnerability Severity Level Based on Text Mining and XGBboost","authors":"Peichao Wang, Yun Zhou, Baodan Sun, Weiming Zhang","doi":"10.1109/ICACI.2019.8778469","DOIUrl":null,"url":null,"abstract":"Vulnerabilities have always been important factors threatening the security of information systems. The endless vulnerabilities pose a huge threat to the social economy and public privacy. The vulnerability database provides abundant materials for researchers to study the threat of vulnerabilities, while mining the text information of the database and obtaining valuable information can help to grasp the severity level of the vulnerability. Based on the textual description of vulnerabilities in the database, we first use text mining to extract main features. Then we utilize principal component analysis to gather sparse features which take sparse characteristic into consideration. Finally we use XGBoost to intelligently predict the severity level of vulnerabilities and compare them with the results of other machine learning methods based on same extracted features. The experiment on real-world vulnerability text description show the effectiveness of our method.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Vulnerabilities have always been important factors threatening the security of information systems. The endless vulnerabilities pose a huge threat to the social economy and public privacy. The vulnerability database provides abundant materials for researchers to study the threat of vulnerabilities, while mining the text information of the database and obtaining valuable information can help to grasp the severity level of the vulnerability. Based on the textual description of vulnerabilities in the database, we first use text mining to extract main features. Then we utilize principal component analysis to gather sparse features which take sparse characteristic into consideration. Finally we use XGBoost to intelligently predict the severity level of vulnerabilities and compare them with the results of other machine learning methods based on same extracted features. The experiment on real-world vulnerability text description show the effectiveness of our method.
基于文本挖掘和XGBboost的漏洞严重程度智能预测
漏洞一直是威胁信息系统安全的重要因素。层出不穷的漏洞对社会经济和公众隐私构成了巨大的威胁。漏洞数据库为研究人员研究漏洞的威胁提供了丰富的资料,而挖掘数据库的文本信息,获取有价值的信息,有助于掌握漏洞的严重程度。在对数据库中的漏洞进行文本描述的基础上,首先采用文本挖掘方法提取主要特征。然后利用主成分分析方法对考虑稀疏特性的稀疏特征进行收集。最后,我们使用XGBoost智能预测漏洞的严重程度,并将其与基于相同提取特征的其他机器学习方法的结果进行比较。通过对真实漏洞文本描述的实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信