Feature selection for ensembles:a hierarchical multi-objective genetic algorithm approach

Luiz Oliveira, R. Sabourin, Flávio Bortolozzi, C. Suen
{"title":"Feature selection for ensembles:a hierarchical multi-objective genetic algorithm approach","authors":"Luiz Oliveira, R. Sabourin, Flávio Bortolozzi, C. Suen","doi":"10.1109/ICDAR.2003.1227748","DOIUrl":null,"url":null,"abstract":"Feature selection for ensembles has shown to be an effectivestrategy for ensemble creation. In this paper we presentan ensemble feature selection approach based on a hierarchicalmulti-objective genetic algorithm. The first level performsfeature selection in order to generate a set of goodclassifiers while the second one combines them to providea set of powerful ensembles. The proposed method is evaluatedin the context of handwritten digit recognition, usingthree different feature sets and neural networks (MLP) asclassifiers. Experiments conducted on NIST SD19 demonstratedthe effectiveness of the proposed strategy.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Feature selection for ensembles has shown to be an effectivestrategy for ensemble creation. In this paper we presentan ensemble feature selection approach based on a hierarchicalmulti-objective genetic algorithm. The first level performsfeature selection in order to generate a set of goodclassifiers while the second one combines them to providea set of powerful ensembles. The proposed method is evaluatedin the context of handwritten digit recognition, usingthree different feature sets and neural networks (MLP) asclassifiers. Experiments conducted on NIST SD19 demonstratedthe effectiveness of the proposed strategy.
集成的特征选择:一种分层多目标遗传算法方法
集成的特征选择已被证明是集成创建的一种有效策略。本文提出了一种基于层次多目标遗传算法的集成特征选择方法。第一级执行特征选择以生成一组好的分类器,而第二级将它们组合起来以提供一组强大的集成。在手写体数字识别的背景下,使用三种不同的特征集和神经网络(MLP)作为分类器对所提出的方法进行了评估。在NIST SD19上进行的实验证明了所提出策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信