Road Extraction from Remotely Sensed Data: A Review

Mohd Jawed Khan, P. Singh
{"title":"Road Extraction from Remotely Sensed Data: A Review","authors":"Mohd Jawed Khan, P. Singh","doi":"10.21467/proceedings.115.14","DOIUrl":null,"url":null,"abstract":"Up-to-date road networks are crucial and challenging in computer vision tasks. Road extraction is yet important for vehicle navigation, urban-rural planning, disaster relief, traffic management, road monitoring and others. Road network maps facilitate a great number of applications in our everyday life. Therefore, a systematic review of deep learning approaches applied to remotely sensed imagery for road extraction is conducted in this paper. Four main types of deep learning approaches, namely, the GANs model, deconvolutional networks, FCNs, and patch-based CNNs models are presented in this paper. We also compare these various deep learning models applied to remotely sensed imagery to show their performances in extracting road parts from high-resolution remote sensed imagery. Later future research directions and research gaps are described.","PeriodicalId":413368,"journal":{"name":"Proceedings of Intelligent Computing and Technologies Conference","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Intelligent Computing and Technologies Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21467/proceedings.115.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Up-to-date road networks are crucial and challenging in computer vision tasks. Road extraction is yet important for vehicle navigation, urban-rural planning, disaster relief, traffic management, road monitoring and others. Road network maps facilitate a great number of applications in our everyday life. Therefore, a systematic review of deep learning approaches applied to remotely sensed imagery for road extraction is conducted in this paper. Four main types of deep learning approaches, namely, the GANs model, deconvolutional networks, FCNs, and patch-based CNNs models are presented in this paper. We also compare these various deep learning models applied to remotely sensed imagery to show their performances in extracting road parts from high-resolution remote sensed imagery. Later future research directions and research gaps are described.
基于遥感数据的道路提取研究进展
在计算机视觉任务中,最新的道路网络是至关重要和具有挑战性的。道路提取在车辆导航、城乡规划、救灾、交通管理、道路监控等方面仍具有重要意义。道路网络地图为我们日常生活中的许多应用提供了便利。因此,本文对应用于遥感图像道路提取的深度学习方法进行了系统综述。本文介绍了四种主要的深度学习方法,即GANs模型、反卷积网络、fns和基于patch的cnn模型。我们还比较了这些应用于遥感图像的不同深度学习模型,以展示它们在从高分辨率遥感图像中提取道路部分方面的性能。阐述了今后的研究方向和研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信