Application of the Flow Curvature Method in Lorenz-Haken Model

A. Nazimuddin, Md. Showkat Ali
{"title":"Application of the Flow Curvature Method in Lorenz-Haken Model","authors":"A. Nazimuddin, Md. Showkat Ali","doi":"10.5815/ijmsc.2020.01.04","DOIUrl":null,"url":null,"abstract":"We consider a recently developed new approach so-called the flow curvature method based on the differential geometry to analyze the Lorenz-Haken model. According to this method, the trajectory curve or flow of any dynamical system of dimension n considers as a curve in Euclidean space of dimension n . Then the flow curvature or the curvature of the trajectory curve may be computed analytically. The set of points where the flow curvature is null or empty defines the flow curvature manifold. This manifold connected with the dynamical system of any dimension n directly describes the analytical equation of the slow invariant manifold incorporated with the same dynamical system. In this article, we apply the flow curvature method for the first time on the three-dimensional Lorenz-Haken model to compute the analytical equation of the slow invariant manifold where we use the Darboux theorem to prove the invariance property of the slow manifold. After that, we determine the osculating plane of the dynamical system and find the relation between flow curvature manifold and osculating plane. Finally, we find the nature of the fixed point stability using flow curvature manifold.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2020.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a recently developed new approach so-called the flow curvature method based on the differential geometry to analyze the Lorenz-Haken model. According to this method, the trajectory curve or flow of any dynamical system of dimension n considers as a curve in Euclidean space of dimension n . Then the flow curvature or the curvature of the trajectory curve may be computed analytically. The set of points where the flow curvature is null or empty defines the flow curvature manifold. This manifold connected with the dynamical system of any dimension n directly describes the analytical equation of the slow invariant manifold incorporated with the same dynamical system. In this article, we apply the flow curvature method for the first time on the three-dimensional Lorenz-Haken model to compute the analytical equation of the slow invariant manifold where we use the Darboux theorem to prove the invariance property of the slow manifold. After that, we determine the osculating plane of the dynamical system and find the relation between flow curvature manifold and osculating plane. Finally, we find the nature of the fixed point stability using flow curvature manifold.
流动曲率法在Lorenz-Haken模型中的应用
本文提出了一种基于微分几何的流动曲率法来分析Lorenz-Haken模型。根据该方法,将任意n维动力系统的轨迹曲线或流动视为n维欧几里德空间中的曲线。然后可以解析地计算出流动曲率或轨迹曲线的曲率。流曲率为零或空的点的集合定义了流曲率流形。这种与任意维n的动力系统相连接的流形直接描述了与同一动力系统相结合的慢不变流形的解析方程。本文首次在三维Lorenz-Haken模型上应用流动曲率法计算慢不变流形的解析方程,并利用达布定理证明了慢不变流形的不变性。在此基础上,确定了动力系统的接触面,并找出了流动曲率流形与接触面之间的关系。最后,我们利用流曲率流形找到了不动点稳定性的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信