GROWTH TIME OF ACOUSTIC PERTURBATIONS IN ISENTROPICALLY UNSTABLE HEAT-RELEASING MEDIUM

D. Riashchikov, I. A. Pomelnikov, N. Molevich
{"title":"GROWTH TIME OF ACOUSTIC PERTURBATIONS IN ISENTROPICALLY \nUNSTABLE HEAT-RELEASING MEDIUM","authors":"D. Riashchikov, I. A. Pomelnikov, N. Molevich","doi":"10.18287/2541-7525-2022-28-1-2-113-119","DOIUrl":null,"url":null,"abstract":"Isentropic instability is a type of thermal instability that leads to the growth of acoustic waves. As a result of wave growth in such media, autowave structures are formed, the parameters of which depend only on the properties of the medium and can be predicted both analytically and numerically. This study aims to answer the question of how quickly these structures can form in an isentropically unstable medium with parameters similar to Orion Bar. It is shown that the growth time depends on the characteristic size of the initial perturbation. The fastest growing structures take 3-6 thousand years to reach half their maximum amplitude. Further growth to the maximum value takes 15-20 thousand years.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2022-28-1-2-113-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Isentropic instability is a type of thermal instability that leads to the growth of acoustic waves. As a result of wave growth in such media, autowave structures are formed, the parameters of which depend only on the properties of the medium and can be predicted both analytically and numerically. This study aims to answer the question of how quickly these structures can form in an isentropically unstable medium with parameters similar to Orion Bar. It is shown that the growth time depends on the characteristic size of the initial perturbation. The fastest growing structures take 3-6 thousand years to reach half their maximum amplitude. Further growth to the maximum value takes 15-20 thousand years.
等熵不稳定放热介质中声扰动的生长时间
等熵不稳定性是一种导致声波增长的热不稳定性。由于波在这种介质中的增长,形成了自波结构,其参数仅取决于介质的性质,并且可以用解析和数值方法预测。这项研究旨在回答这些结构在参数类似于猎户座酒吧的等熵不稳定介质中形成的速度有多快的问题。结果表明,生长时间取决于初始扰动的特征尺寸。增长最快的结构需要3-6千年才能达到其最大振幅的一半。进一步增长到最大值需要15-2万年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信