Signal estimation with low infinity-norm error by minimizing the mean p-norm error

Jin Tan, D. Baron, Liyi Dai
{"title":"Signal estimation with low infinity-norm error by minimizing the mean p-norm error","authors":"Jin Tan, D. Baron, Liyi Dai","doi":"10.1109/CISS.2014.6814074","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating an input signal from noisy measurements in both parallel scalar Gaussian channels and linear mixing systems. The performance of the estimation process is quantified by the ℓ∞-norm error metric (worst case error). Our previous results have shown for independent and identically distributed (i.i.d.) Gaussian mixture input signals that, when the input signal dimension goes to infinity, the Wiener filter minimizes the ℓ∞-norm error. However, the input signal dimension is finite in practice. In this paper, we estimate the finite dimensional input signal by minimizing the mean ℓp-norm error. Numerical results show that the ℓp-norm minimizer outperforms the Wiener filter, provided that the value of p is properly chosen. Our results further suggest that the optimal value of p increases with the signal dimension, and that for i.i.d. Bernoulli-Gaussian input signals, the optimal p increases with the percentage of nonzeros.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of estimating an input signal from noisy measurements in both parallel scalar Gaussian channels and linear mixing systems. The performance of the estimation process is quantified by the ℓ∞-norm error metric (worst case error). Our previous results have shown for independent and identically distributed (i.i.d.) Gaussian mixture input signals that, when the input signal dimension goes to infinity, the Wiener filter minimizes the ℓ∞-norm error. However, the input signal dimension is finite in practice. In this paper, we estimate the finite dimensional input signal by minimizing the mean ℓp-norm error. Numerical results show that the ℓp-norm minimizer outperforms the Wiener filter, provided that the value of p is properly chosen. Our results further suggest that the optimal value of p increases with the signal dimension, and that for i.i.d. Bernoulli-Gaussian input signals, the optimal p increases with the percentage of nonzeros.
通过最小化平均p-范数误差实现低无穷范数误差的信号估计
我们考虑了在平行标量高斯信道和线性混频系统中从噪声测量中估计输入信号的问题。估计过程的性能由最坏情况误差度量(最坏情况误差)量化。我们之前的结果表明,独立和同分布(i.i.d)。高斯混合输入信号,当输入信号维数趋于无穷大时,维纳滤波器使l∞范数误差最小化。但是在实际应用中,输入信号的维数是有限的。在本文中,我们通过最小化平均p-范数误差来估计有限维输入信号。数值结果表明,在p值选择得当的情况下,p-范数最小化器优于维纳滤波器。我们的研究结果进一步表明,p的最优值随着信号维数的增加而增加,对于i.i.d伯努利-高斯输入信号,p的最优值随着非零百分比的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信