Dimension reduction of microarray data based on local tangent space alignment

Li Teng, Hongyu Li, Xu-ping Fu, Wenbin Chen, I-Fan Shen
{"title":"Dimension reduction of microarray data based on local tangent space alignment","authors":"Li Teng, Hongyu Li, Xu-ping Fu, Wenbin Chen, I-Fan Shen","doi":"10.1109/COGINF.2005.1532627","DOIUrl":null,"url":null,"abstract":"We introduce the new nonlinear dimension reduction method: LTSA, in dealing with the difficulty of analyzing high-dimensional, nonlinear microarray data. Firstly, we analyze the applicability of the method and we propose the reconstruction error of LTSA. The method is tested on Iris data set and acute leukemias microarray data. The results show good visualization performance. And LTSA outperforms PCA on determining the reduced dimension. There is only subtle change in the clustering correctness after dimension reduction by LTSA. It is evident that application of nonlinear dimension reduction techniques could have a promising perspective in microarray data analysis.","PeriodicalId":248646,"journal":{"name":"Fourth IEEE Conference on Cognitive Informatics, 2005. (ICCI 2005).","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Conference on Cognitive Informatics, 2005. (ICCI 2005).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2005.1532627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We introduce the new nonlinear dimension reduction method: LTSA, in dealing with the difficulty of analyzing high-dimensional, nonlinear microarray data. Firstly, we analyze the applicability of the method and we propose the reconstruction error of LTSA. The method is tested on Iris data set and acute leukemias microarray data. The results show good visualization performance. And LTSA outperforms PCA on determining the reduced dimension. There is only subtle change in the clustering correctness after dimension reduction by LTSA. It is evident that application of nonlinear dimension reduction techniques could have a promising perspective in microarray data analysis.
基于局部切线空间对齐的微阵列数据降维
为了解决高维非线性微阵列数据分析的困难,我们引入了一种新的非线性降维方法:LTSA。首先分析了该方法的适用性,给出了LTSA的重建误差。该方法在虹膜数据集和急性白血病微阵列数据上进行了测试。结果表明,该方法具有良好的可视化性能。LTSA在确定降维数方面优于PCA。LTSA降维后聚类正确性只有细微的变化。可见,非线性降维技术在微阵列数据分析中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信