A new efficient density-based data clustering technique using cross expansion for data mining

Cheng-Fa Tsai, Po-Yi She
{"title":"A new efficient density-based data clustering technique using cross expansion for data mining","authors":"Cheng-Fa Tsai, Po-Yi She","doi":"10.1109/ICMLC.2014.7009662","DOIUrl":null,"url":null,"abstract":"This investigation develops a new data clustering technique. It is a new density-based clustering scheme by diagonal sampling and a new method of fold and rotation for enhancing data clustering performance. The proposed algorithm's expansion without selecting data points to increase computation cost and it may considerably lower time cost The experimental results confirm that the presented approach has fairly high clustering accuracy and noise filtering rate, and is faster than numerous well-known existing density-based data clustering algorithms such as DBSCAN, IDBSCAN, KIDBSCAN and FDBSCAN approaches.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This investigation develops a new data clustering technique. It is a new density-based clustering scheme by diagonal sampling and a new method of fold and rotation for enhancing data clustering performance. The proposed algorithm's expansion without selecting data points to increase computation cost and it may considerably lower time cost The experimental results confirm that the presented approach has fairly high clustering accuracy and noise filtering rate, and is faster than numerous well-known existing density-based data clustering algorithms such as DBSCAN, IDBSCAN, KIDBSCAN and FDBSCAN approaches.
一种新的基于密度的交叉扩展数据聚类技术
本研究开发了一种新的数据聚类技术。它是一种新的基于密度的对角采样聚类方案,是一种新的提高数据聚类性能的折叠和旋转方法。实验结果表明,该方法具有较高的聚类精度和噪声滤除率,并且比现有的DBSCAN、IDBSCAN、KIDBSCAN和FDBSCAN等基于密度的数据聚类算法更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信