{"title":"4-Dimensional 2-Crossed Modules","authors":"Elis SOYLU YILMAZ","doi":"10.53570/jnt.1148482","DOIUrl":null,"url":null,"abstract":"In this work, we defined a new category called 4-Dimensional 2-crossed modules. We identified the subobjects and ideals in this category. The notion of the subobject is a generalization of ideas like subsets from set theory, subspaces from topology, and subgroups from group theory. We then exemplified subobjects and ideals in the category of 4-Dimensional 2-crossed modules. A quotient object is the dual concept of a subobject. Concepts like quotient sets, spaces, groups, graphs, etc. are generalized with the notion of a quotient object. Using the ideal, we obtain the quotient of two subobjects and prove that the intersection of finite ideals is also an ideal in this category.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1148482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, we defined a new category called 4-Dimensional 2-crossed modules. We identified the subobjects and ideals in this category. The notion of the subobject is a generalization of ideas like subsets from set theory, subspaces from topology, and subgroups from group theory. We then exemplified subobjects and ideals in the category of 4-Dimensional 2-crossed modules. A quotient object is the dual concept of a subobject. Concepts like quotient sets, spaces, groups, graphs, etc. are generalized with the notion of a quotient object. Using the ideal, we obtain the quotient of two subobjects and prove that the intersection of finite ideals is also an ideal in this category.