{"title":"Verifying a self-timed divider","authors":"Tarik Ono-Tesfaye, Christoph Kern, M. Greenstreet","doi":"10.1109/ASYNC.1998.666501","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to verifying timed designs based on refinement: first, correctness is established for a speed-independent model; then, the timed design is shown to be a refinement of this model. Although this approach is less automatic than methods based on timed state space enumeration, it is tractable for larger designs. Our method is implemented using a proof checker with a built-in model checker for verifying properties of high-level models, a tautology checker for establishing refinement, and a graph-based timing verification procedure for showing timing properties of transistor level models. We demonstrate the method by proving the timing correctness of Williams' self-timed divider.","PeriodicalId":425072,"journal":{"name":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1998.666501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents an approach to verifying timed designs based on refinement: first, correctness is established for a speed-independent model; then, the timed design is shown to be a refinement of this model. Although this approach is less automatic than methods based on timed state space enumeration, it is tractable for larger designs. Our method is implemented using a proof checker with a built-in model checker for verifying properties of high-level models, a tautology checker for establishing refinement, and a graph-based timing verification procedure for showing timing properties of transistor level models. We demonstrate the method by proving the timing correctness of Williams' self-timed divider.