A wireless charging mechanism for a rotational human motion energy harvester

P. Pillatsch, P. Wright, E. Yeatman, A. Holmes
{"title":"A wireless charging mechanism for a rotational human motion energy harvester","authors":"P. Pillatsch, P. Wright, E. Yeatman, A. Holmes","doi":"10.1109/BSN.2015.7299395","DOIUrl":null,"url":null,"abstract":"Motion energy harvesting is a sought after alternative to battery powering for implanted and body worn devices. However, the lack of electricity generation at rest is a major concern. This paper describes a previously presented piezoelectric rotational motion harvester, and presents a mechanism for wireless and external actuation of the main rotor of the device through a magnetic reluctance coupling. With this approach, an internal battery or super-capacitor could be recharged during prolonged periods of inactivity. An improved experimental setup uses a stepper motor to accurately prescribe even high actuation frequencies. A single stack and diametrically opposed dual stacks of driving magnets are investigated. It is demonstrated that adding the additional magnet stack is detrimental to the system performance. Furthermore, the system was tested in a horizontal and a gravity-independent vertical arrangement. Power can successfully be generated regardless of orientation. The maximal separation between driving magnets and harvester reached 20 millimeters. Lastly, the device can operate even under misalignment, and the optimal driving frequency is 25 Hertz, at which over 100 microwatts of power were generated for a device with a functional volume of 1.85 cubic centimeters.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Motion energy harvesting is a sought after alternative to battery powering for implanted and body worn devices. However, the lack of electricity generation at rest is a major concern. This paper describes a previously presented piezoelectric rotational motion harvester, and presents a mechanism for wireless and external actuation of the main rotor of the device through a magnetic reluctance coupling. With this approach, an internal battery or super-capacitor could be recharged during prolonged periods of inactivity. An improved experimental setup uses a stepper motor to accurately prescribe even high actuation frequencies. A single stack and diametrically opposed dual stacks of driving magnets are investigated. It is demonstrated that adding the additional magnet stack is detrimental to the system performance. Furthermore, the system was tested in a horizontal and a gravity-independent vertical arrangement. Power can successfully be generated regardless of orientation. The maximal separation between driving magnets and harvester reached 20 millimeters. Lastly, the device can operate even under misalignment, and the optimal driving frequency is 25 Hertz, at which over 100 microwatts of power were generated for a device with a functional volume of 1.85 cubic centimeters.
一种用于旋转人体运动能量采集器的无线充电机构
运动能量收集是一种寻求替代电池供电的植入和身体穿戴设备。然而,静止状态下发电的缺乏是一个主要问题。本文介绍了一种已有的压电旋转运动收割机,并提出了一种通过磁阻耦合器对该设备主转子进行无线和外部驱动的机构。通过这种方法,内部电池或超级电容器可以在长时间不活动时充电。改进的实验装置使用步进电机来精确地规定高驱动频率。研究了单堆和对置双堆驱动磁体。结果表明,外加磁堆对系统性能有不利影响。此外,该系统还在水平和不受重力影响的垂直布置下进行了测试。无论朝向如何,都可以成功地产生能量。驱动磁体与收割机之间的最大间距达到20毫米。最后,该装置可以在不对准的情况下工作,最佳驱动频率为25赫兹,在该频率下,该装置的功能体积为1.85立方厘米,产生的功率超过100微瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信