Combining Synthetic Minority Oversampling Technique and Subset Feature Selection Technique For Class Imbalance Problem

Pawan Lachheta, S. Bawa
{"title":"Combining Synthetic Minority Oversampling Technique and Subset Feature Selection Technique For Class Imbalance Problem","authors":"Pawan Lachheta, S. Bawa","doi":"10.1145/2979779.2979804","DOIUrl":null,"url":null,"abstract":"Building an effective classification model when the high dimensional data is suffering from class imbalance problem is a major challenge. The problem is severe when negative samples have large percentages than positive samples. To surmount the class imbalance and high dimensionality issues in the dataset, we propose a SFS framework that comprises of SMOTE filters, which are used for balancing the datasets, as well as feature ranker for pre-processing of data. The framework is developed using R language and various R packages. Then the performance of SFS framework is evaluated and found that proposed framework outperforms than other state-of-the-art methods.","PeriodicalId":298730,"journal":{"name":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advances in Information Communication Technology & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979779.2979804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Building an effective classification model when the high dimensional data is suffering from class imbalance problem is a major challenge. The problem is severe when negative samples have large percentages than positive samples. To surmount the class imbalance and high dimensionality issues in the dataset, we propose a SFS framework that comprises of SMOTE filters, which are used for balancing the datasets, as well as feature ranker for pre-processing of data. The framework is developed using R language and various R packages. Then the performance of SFS framework is evaluated and found that proposed framework outperforms than other state-of-the-art methods.
结合合成少数派过采样技术和子集特征选择技术的类不平衡问题
当高维数据存在类不平衡问题时,如何建立有效的分类模型是一个重大的挑战。当阴性样本的百分比大于阳性样本时,问题就很严重了。为了克服数据集中的类不平衡和高维问题,我们提出了一个SFS框架,该框架包括用于平衡数据集的SMOTE过滤器,以及用于数据预处理的特征排序器。该框架是使用R语言和各种R包开发的。然后对SFS框架的性能进行了评估,发现所提出的框架优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信