User-Defined Keyword Spotting Utilizing Speech Synthesis for Low-Resource Wearable Devices

Jaebong Lim, Yunju Baek
{"title":"User-Defined Keyword Spotting Utilizing Speech Synthesis for Low-Resource Wearable Devices","authors":"Jaebong Lim, Yunju Baek","doi":"10.1109/ICCE53296.2022.9730771","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel keyword spotting (KWS) system for wearable devices that allows users to add user-defined keywords in quick and easy way. Adding keywords in KWS requires developing a new model to support them, where the model development takes a lot of work and time. To overcome this, we propose an approach that automates the entire development phase of a KWS model for low-resource devices. The proposed system is characterized by automating the data collection step and training step using synthetic speech data. Our implementation and experiments show that the proposed system can automatically develop a user-defined KWS model within a minute.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel keyword spotting (KWS) system for wearable devices that allows users to add user-defined keywords in quick and easy way. Adding keywords in KWS requires developing a new model to support them, where the model development takes a lot of work and time. To overcome this, we propose an approach that automates the entire development phase of a KWS model for low-resource devices. The proposed system is characterized by automating the data collection step and training step using synthetic speech data. Our implementation and experiments show that the proposed system can automatically develop a user-defined KWS model within a minute.
基于语音合成的低资源可穿戴设备自定义关键字识别
在本文中,我们提出了一种新的可穿戴设备关键字定位系统(KWS),允许用户快速简便地添加自定义关键字。在KWS中添加关键字需要开发一个新模型来支持它们,而模型开发需要花费大量的工作和时间。为了克服这一点,我们提出了一种方法,使低资源设备的KWS模型的整个开发阶段自动化。该系统的特点是利用合成语音数据实现数据采集和训练的自动化。我们的实现和实验表明,该系统可以在1分钟内自动生成用户自定义的KWS模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信