Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures

A. Witsch, R. Reichle, K. Geihs, S. Lange, Martin A. Riedmiller
{"title":"Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures","authors":"A. Witsch, R. Reichle, K. Geihs, S. Lange, Martin A. Riedmiller","doi":"10.1109/ADPRL.2011.5967352","DOIUrl":null,"url":null,"abstract":"Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorithms like policy gradient methods. We describe how to stabilise the policy gradient descent by introducing a regularisation term to enhance the episodic natural actor-critic approach. This allows a more policy independent usage.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorithms like policy gradient methods. We describe how to stabilise the policy gradient descent by introducing a regularisation term to enhance the episodic natural actor-critic approach. This allows a more policy independent usage.
通过正则化项增强情景自然演员-评论家算法以稳定控制结构的学习
控制系统的不完整或不精确的模型使得为相应的控制策略找到合适的结构和参数集变得困难。这些问题是通过强化学习算法如策略梯度方法来解决的。我们描述了如何通过引入正则化术语来稳定政策梯度下降,以增强情景自然行为者批评方法。这允许更独立于策略的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信