Efficient and Explicit Coding for Interactive Communication

R. Gelles, Ankur Moitra, A. Sahai
{"title":"Efficient and Explicit Coding for Interactive Communication","authors":"R. Gelles, Ankur Moitra, A. Sahai","doi":"10.1109/FOCS.2011.51","DOIUrl":null,"url":null,"abstract":"We revisit the problem of reliable interactive communication over a noisy channel, and obtain the first fully explicit (randomized) efficient constant-rate emulation procedure for reliable interactive communication. Our protocol works for any discrete memory less noisy channel with constant capacity, and fails with exponentially small probability in the total length of the protocol. Following a work by Schulman [Schulman 1993] our simulation uses a tree-code, yet as opposed to the non-constructive absolute tree-code used by Schulman, we introduce a relaxation in the notion of goodness for a tree code and define a potent tree code. This relaxation allows us to construct an explicit emulation procedure for any two-party protocol. Our results also extend to the case of interactive multiparty communication. We show that a randomly generated tree code (with suitable constant alphabet size) is an efficiently decodable potent tree code with overwhelming probability. Furthermore we are able to partially derandomize this result by means of epsilon-biased distributions using only O(N) random bits, where N is the depth of the tree.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

We revisit the problem of reliable interactive communication over a noisy channel, and obtain the first fully explicit (randomized) efficient constant-rate emulation procedure for reliable interactive communication. Our protocol works for any discrete memory less noisy channel with constant capacity, and fails with exponentially small probability in the total length of the protocol. Following a work by Schulman [Schulman 1993] our simulation uses a tree-code, yet as opposed to the non-constructive absolute tree-code used by Schulman, we introduce a relaxation in the notion of goodness for a tree code and define a potent tree code. This relaxation allows us to construct an explicit emulation procedure for any two-party protocol. Our results also extend to the case of interactive multiparty communication. We show that a randomly generated tree code (with suitable constant alphabet size) is an efficiently decodable potent tree code with overwhelming probability. Furthermore we are able to partially derandomize this result by means of epsilon-biased distributions using only O(N) random bits, where N is the depth of the tree.
高效和显式的交互通信编码
我们重新考虑了在噪声信道上的可靠交互通信问题,并获得了可靠交互通信的第一个完全显式(随机)高效的恒速率仿真程序。我们的协议适用于任何具有恒定容量的离散存储器低噪声信道,并且在协议的总长度中以指数小的概率失败。在Schulman [Schulman 1993]的工作之后,我们的模拟使用了树状代码,但与Schulman使用的非建设性绝对树状代码相反,我们引入了树状代码的良度概念的放松,并定义了有效的树状代码。这种放松允许我们为任何两方协议构建显式仿真过程。我们的研究结果也适用于交互式多方通信的情况。我们证明了随机生成的树码(具有合适的恒定字母大小)是一种具有压倒性概率的有效可解码的有效树码。此外,我们能够通过只使用O(N)个随机比特的epsilon-biased分布来部分地非随机化这个结果,其中N是树的深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信