Formalisation of transformation-based learning

J. Curran, R. Wong
{"title":"Formalisation of transformation-based learning","authors":"J. Curran, R. Wong","doi":"10.1109/ACSC.2000.824380","DOIUrl":null,"url":null,"abstract":"Research in automatic part of speech (POS) tagging has been dominated by Markov model (MM) taggers. E. Brill (1997) has recently described a transformation-based system with comparable accuracy, and simpler algorithms and representation than MM taggers. We present a set-based formal model of natural language ambiguity and semantic tagging that forms a basis for the generalisation of the transformation-based learning (TBL) and Brill's TBL tagger. We discuss empirical observations of the training algorithm that suggest a new evolutionary transformation learning strategy may dramatically improve learning time without loss of accuracy.","PeriodicalId":304540,"journal":{"name":"Proceedings 23rd Australasian Computer Science Conference. ACSC 2000 (Cat. No.PR00518)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 23rd Australasian Computer Science Conference. ACSC 2000 (Cat. No.PR00518)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSC.2000.824380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Research in automatic part of speech (POS) tagging has been dominated by Markov model (MM) taggers. E. Brill (1997) has recently described a transformation-based system with comparable accuracy, and simpler algorithms and representation than MM taggers. We present a set-based formal model of natural language ambiguity and semantic tagging that forms a basis for the generalisation of the transformation-based learning (TBL) and Brill's TBL tagger. We discuss empirical observations of the training algorithm that suggest a new evolutionary transformation learning strategy may dramatically improve learning time without loss of accuracy.
基于转变的学习的形式化
自动词性标注的研究一直由马尔可夫模型(MM)标注器主导。E. Brill(1997)最近描述了一种基于转换的系统,其精度相当,算法和表示比MM标注器更简单。我们提出了一个基于集合的自然语言歧义和语义标注的形式化模型,为基于转换的学习(TBL)和Brill的TBL标注器的泛化奠定了基础。我们讨论了训练算法的经验观察,表明一种新的进化转换学习策略可以在不损失准确性的情况下显着提高学习时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信